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a b s t r a c t 

We estimate the causal effect of workplace–home commuting distance on inventor productivity. We construct a 

novel panel of U.S. inventors with precisely measured workplace–home distances and inventor-level productivity. 

Our identification strategy exploits firm office relocations as exogenous variation in the commuting distance of 

inventors at the firms. We find a significant negative effect from commuting distance on inventor productivity: 

every 10 km increase in distance is associated with a 5% decrease in patents per inventor–firm pair per year and 

an even greater 7% decrease in patent quality. The highest-performing inventors suffer more from increased com- 

muting distance. We discuss the implications of our findings in the light of recent trends around telecommuting 

and remote work during the COVID-19 pandemic. 
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. Introduction 

An extensive body of ongoing research highlights the importance

f understanding the spatial determinants of innovative productiv-

ty. Technology innovation is a vital source of economic growth

 Romer, 1990 ) and critical for the performance of firms in high-

echnology industries ( Hall et al., 2005 ). Recent work investigates the

mportance of spatial location or proximity on innovation, highlight-

ng specific mechanisms like inter-inventor and inter-firm proximity

 Breschi and Lenzi, 2016; Carlino and Kerr, 2015; Kim and Wu, 2019 ),

ousing markets ( Bernstein et al., 2020 ), and regional policy design

 Moretti and Wilson, 2017; Glaeser and Hausman, 2019 ). 

Although this existing work documents important mechanisms par-

icularly at the firm or patent level of analysis, there remains a gap in

ur understanding of how spatial considerations matter at the inventor

nd inventor–firm level of analysis. In particular, we study how com-

uting distance between an inventor’s home and her workplace might

ffect the production of innovation by the inventor, and consequently,
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er firm. Relative to the existing studies of commuting in the litera-

ures on urban economics and geography, this study addresses two gaps.

irst, we direct attention to understanding how commuting might affect

nventors, a unique and important class of worker. Previous work fo-

uses on commuting distance of general workers (e.g., Mulalic et al.,

014 ), and it remains unclear how commuting distance affects inven-

ors. Second, we investigate how commuting affects individual-level

roductivity, an important outcome with little to no prior empirical

tudy. Although the literature on commuting addresses important out-

omes, such as wage compensation ( Zax, 1991; Manning, 2003; Mulalic

t al., 2014 ), residential mobility ( Zax and Kain, 1996 ), and life quality

 Kahneman and Krueger, 2006 ), a relatively limited set of work looks

irectly at individual-level performance, although some studies address

bsenteeism associated with long commutes (e.g., Van Ommeren and

utiérrez-i Puigarnau, 2011 ). 

Thus, we address the question: How do longer workplace–home com-

utes affect inventor productivity? Theoretically, it is unclear whether

here will be a significant relationship in aggregate. On the one hand, a
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1 DataQuick was acquired by CoreLogic in 2014. 
2 We use combined statistical areas (CSAs), instead of the metropolitan sta- 

tistical areas (MSAs) that make up each CSA, because CSAs better reflect the 

possible intra-region commuting flows and economic ties. See Ferreira and Gy- 

ourko (2015) for additional information about the construction of the DataQuick 

sample. Table 1 provides further information about the geographic coverage of 

the sample. 
onger commute may adversely affect inventor productivity if inventors

pend less time at work ( Bloom et al., 2009 ), face a higher cost of pro-

iding effort ( Shapiro and Stiglitz, 1984; Zenou, 2002; Ross and Zenou,

008; Zenou, 2009 ), or engage in less in-person communication and

ollaboration to share knowledge ( Battiston et al., 2020; Catalini, 2017;

affe et al., 1993 ). On the other hand, several mechanisms could also

mprove inventor productivity and offset these negative effects: inven-

ors with longer commutes could receive higher efficiency wages ( Ross

nd Zenou, 2008; Zenou, 2009 ), face less stress ( Ashforth et al., 2000 ),

nd have more individual time to develop novel ideas ( Furnham, 2000 ).

herefore, we must turn to the data to assess whether commuting dis-

ance has a significant causal effect on inventor productivity. 

We construct a novel inventor–firm–year panel dataset of U.S. inven-

ors that relates inventor productivity to precise measures of workplace–

ome distance. To measure inventor-level productivity, we leverage the

ich information contained in patent records, which allow us to proxy

he scientific and economic value generated by the inventors ( Pakes,

986; Hall et al., 2001 ). Patents serve as a meaningful indicator of the

nnovation and rents captured by both firms ( Pakes, 1985; Kogan et al.,

017 ) and the inventors they employ ( Toivanen and Väänänen, 2012;

line et al., 2019 ). To measure commuting distance for each inventor,

e combine the patent data with comprehensive firm establishment lo-

ation data and inventor residential location data from housing transac-

ion records. 

Our empirical design seeks to overcome the identification challenge

f residential sorting. Both inventors and firms make endogenous lo-

ation choices based on factors such as housing costs, amenities, and

f course commuting costs. To solve this endogeneity problem, we ex-

loit firm relocations that exogenously shock commuting distance in a

tacked and generalized difference-in-differences design. We adopt this

ethodology from Mulalic et al. (2014) , where they use firm relocations

s a quasi-experimental setting to investigate the impact of commuting

istance on wage compensation. In our case, the identification strategy

ocuses on firm relocations that change the workplace–home commuting

istance for inventors who retain the same home location and continue

o work for the same firm before and after the relocation. 

We find a 5% decrease in inventor productivity measured in raw

nnual patent counts for every 10 km increase in commuting distance.

or patent quality as measured by citations, the effect is even larger

ith a 7% decrease in inventor productivity for every 10 km increase

n commuting distance. The productivity loss is larger for the highest-

erforming inventors, those in the top 10% of all the inventors we study.

he results are robust to a variety of alternative empirical tests that in-

estigate and rule out other factors that may affect our measurement of

he relationship between commuting distance and inventor productiv-

ty, i.e., firm relocations relative to pre-trends in inventor performance;

rm-level characteristics, time-varying amenities, composition of the in-

entor sample, etc. 

This study makes several contributions. First, we provide the first

irect causal estimate of the impact of commuting on individual-level

roductivity in the literature, for a particular class of skilled workers: in-

entors. We measure a key implication of the commuting costs assumed

n the monocentric city model ( Alonso, 1964; Duranton and Puga, 2015;

ills, 1967; Muth, 1969 ), which should interest urban and economic

eography scholars in general. The negative effect of longer commutes

n inventor productivity acts against positive agglomerative forces that

ause populous cities to be more productive, such as improved matching

ithin a larger labor pool ( Helsley and Strange, 1990; Lagos, 2000 ), in-

reased specialization via division of labor ( Baumgardner, 1988; Becker

nd Murphy, 1992; Duranton, 1998 ), and more knowledge spillovers

 Jovanovic and Rob, 1989; Glaeser, 1999; Duranton and Puga, 2001 ). 

Second, we contribute to recent literature studying the relationship

etween the spatial organization of inventors and firm innovation per-

ormance. Recent work continues to investigate the effect of spatial

roximity on innovation ( Aggarwal et al., 2020; Breschi and Lenzi,

016; Carlino and Kerr, 2015; Roche, 2020 ) and the role of policy in that
elationship ( Moretti and Wilson, 2017; Glaeser and Hausman, 2019 ).

e focus specifically on inventor–firm proximity, the dimension of prox-

mity unexplored in prior work. 

Finally, we apply the findings of this study to derive implications

or future research on telecommuting and remote work. The research

or this study largely took place prior to the COVID-19 pandemic, and

elecommuting and remote work were not common in our study periods.

hat said, our findings relating innovation to physical commuting can

rovide insights towards an understanding of the relationship between

nnovation performance and telecommuting —both as a partial and full

ubstitute for physical commuting. Nevertheless, significant open ques-

ions remain, particularly about how telecommuting relates to general

roductivity and creativity, which are both necessary components of

nnovation performance. We call for future research to tease out the

pecific mechanisms through which telecommuting might affect the in-

ovation generated by high-skilled workers. 

The rest of the paper is structured as follows. First, we describe

he construction of the inventor–firm–year panel data sample central

o this paper. Second, we discuss the key endogeneity considerations

nd present our empirical strategy leveraging workplace relocations for

ausal identification. Third, we document the empirical findings. We

hen conclude with a summary of our contributions and discuss oppor-

unities for future work. 

. Data 

Leveraging a novel combination of several data sources, we construct

 unique inventor–firm–year panel for U.S. firms and inventors between

997 and 2012. The data contains precise locations of both the work-

lace and home of inventors, allowing us to accurately construct vari-

us measures of workplace–home commuting distance for each inven-

or. Moreover, our setting of inventors lends itself directly to measuring

ndividual-level contributions to firm productivity, through measures of

atenting output that are linked to both the inventors and their employ-

ng firms. This data then allows us to exploit within-city relocations of

he firm offices, serving as exogenous shocks to the workplace–home

istance for each inventor. 

.1. Data construction 

There are three different data types combined in this paper: patent

ata, employee data, and firm data. The U.S. Patent and Trademark Of-

ce (USPTO) data captures the whole universe of inventors and their

rms in the U.S. Because the address information in the USPTO data

s insufficiently precise for our desired analysis, we merge the inven-

ors and firms from the USPTO data to DataQuick and InfoUSA data on

nventor residences and firm establishments, respectively. 

.1.1. Employee data: Dataquick 

To identify the residential location of inventors in our sample, we

se detailed housing transactions data from DataQuick, a leading sup-

lier of real estate data and analytics, to obtain the street address of the

nventors. 1 The data covers 60 combined statistical areas (CSA) in 23

tates from 1993 to 2012 and includes more than 195 million housing

ransactions and refinances. 2 For each transaction, we observe both the

xact address of each home bought/sold, and the full name of the home

uyers and sellers. 
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Table 1 

Data Composition by CSA . The Final Sample consists of inventors used in our 

main analyses, and All Inventors reflects the entire set of inventors in the USPTO 

data. The numbers represent observation counts of inventors and firms by CSA, 

and the percentages of inventors and firms in a CSA are shown in parentheses. 

The six largest CSAs by population are shown, ordered by the count of inventors, 

while the rest are grouped into Others. 

Combined Statistical Area Final Sample All Inventors 

Inventors Firms Inventors 

San Jose-San Francisco-Oakland 1168 341 146,631 

(CA) (34%) (29%) (26%) 

Boston-Worcester-Providence 515 180 67,922 

(MA-RI-NH-CT) (15%) (15%) (12%) 

Los Angeles-Long Beach 363 126 60,503 

(CA) (11%) (11%) (11%) 

Chicago-Naperville 205 72 46,188 

(IL-IN-WI) (6%) (6%) (8%) 

New York-Newark 160 92 84,529 

(NY-NJ-CT-PA) (5%) (8%) (15%) 

Washington-Baltimore-Arlington 133 65 33,091 

(DC-MD-VA-WV-PA) (4%) (6%) (6%) 

Others 901 304 124,117 

(26%) (26%) (22%) 

Total 3445 1180 562,981 

(100%) (100%) (100%) 
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5 Although homeowner names are unique within our cleaned dataset, there 

could be multiple same-name individuals living in the same city who are not 

in our dataset. This measurement error potentially attenuates our estimates to- 

wards zero. As a robustness check, we estimate an alternative specification by 

weighting each inventor–firm pair inversely proportional to the probability of 

another person having the same name in the same city. The results are consistent 

with our main results. See Online Appendix A.2. 
6 See Online Appendix A.1.4. 
.1.2. Firm data: InfoUSA 

To identify the workplace location of inventors in our sample, we

se historical firm establishment location data from InfoUSA contain-

ng the street addresses of offices of all firms in the US between 1997

nd 2012. InfoUSA aggregates firm location data from various public

ources, including yellow pages, credit card billing data, company an-

ual reports, etc. InfoUSA also verifies information via phone calls and

eb research every year ( DiNardo and Lee, 2004 ). The data provides in-

ormation about firm name, street address, NAICS code, employee count,

nd sales volume. To verify the accuracy of InfoUSA data, we compare it

o the County Business Patterns (CBP) data by state, and we find the to-

als to be quite similar. 3 The InfoUSA data covers more than 15 million

erified firm establishments in U.S. 

.1.3. Matching across data 

To construct a panel of matched inventor–firm pairs, we start with

he inventor and firm information in the USPTO data between 1975

nd 2012. 4 Li et al. (2014) provide a disambiguated patent database

dentifying unique inventors across patents and distinguishing inventors

ith identical or similar names. Each patent contains the names of the

nventors, the firm (i.e., assignee) that owns the patent and most likely

mploys the inventor(s), and the home city and state of each inventor

n the U.S. To complement the limited inventor location information in

he USPTO data, we first match the USPTO inventor names and locations

city and state) with the DataQuick housing transaction data that reveals

xact home addresses. We then match firm names and locations against

he InfoUSA data to obtain precise firm establishment addresses. The

atching process is described in detail in the paragraphs below. 

To obtain inventor home addresses, we first match home buyer

ames exactly against inventor names from the same city. We then

atch inventor names to seller names in the subsequent transaction

o obtain ownership years for each home buyer. To restrict our sam-

le to owner-occupiers, we exclude cases where people with the same

ames own different addresses in the same city because we cannot iden-

ify their main residence or whether they are different people with the

ame name. In other words, we identify homeowners with unique names
3 See Online Appendix A.1.2. 
4 We focus on utility patents, which account for more than 90% of all patents 

ranted by the USPTO. The raw patent data covers 828,217 ultimately granted 

atents that were filed by 562,981 inventors living in the 60 CSAs. 

o

o

t

ithin a city. 5 Overall, we match around 264,000 inventors, or 47% of

ll inventors, to their exact home addresses. To assess the validity of this

atching process, we conduct a balance test comparing the matched in-

entors with unmatched inventors in terms of their innovation perfor-

ance: we find no statistically significant difference across these two

roups. 6 

We then manually match USPTO firm names against firm establish-

ent names in the firm location data to obtain inventor workplace ad-

resses. We obtain precise office locations for 36,468 firms that applied

or patents between 1997 to 2012 with inventors for whom we could

dentify their precise home address. To identify an inventor’s precise

ork location if her employer has multiple establishments within the

SA, we select the most likely location based on whether it has by far

he largest number of employees and whether it has a “research labora-

ory ” designation in the corresponding NAICS codes. 7 We drop observa-

ions where it was impossible to uniquely identify a main office location

ithin the CSA. This process results in 35,836 single-location firms. 

As we describe later in our empirical strategy section, we use firm re-

ocations as exogenous shocks to commuting distances. In service of this

mpirical strategy, we identify within-CSA business relocations where

he main firm establishment location within the CSA changes from one

ear to the next. To improve the power of our estimates, we limit our

ample to firms making substantial moves of more than one kilometer.

e then identify inventors who worked (i.e., patented) for the relocating

rm both before and after its relocation. Finally, we eliminate reloca-

ions that occurred in 1997 or after 2010, so we have data both before

nd after the relocation. We also exclude outliers that account for 3%

f our total number of observations. 8 

Our study focuses on the inventors who changed neither their home

ocations nor their employers during the sample period. This restric-

ion is required because of our identification strategy: we study only

ommuting distance changes from firm relocation, not from inventors

oving homes or changing jobs. Among all the inventors who work

t relocating firms, 50% of them change neither their home nor their

ob, and we focus on these inventors in our sample. There are other

ypes of inventors, too: 46% of them move their residence; 11% of them

hange their job; and 7% of them change both their residence and their

ob. Our final sample consists of 22,917 inventor–firm–year observa-

ions and 3445 inventor–firm pairs, representing 3417 unique inventors

mployed at 1068 relocating firms. 

.2. Variables 

.2.1. Dependent variables: Inventor productivity 

We construct several patent quantity and quality measures to cap-

ure inventor productivity based on the following rules. We attribute

ach patent as the output of the assigned firm and the listed inventor(s)

ased on its application year, which is the year when the invention was

nitially filed at the USPTO. We use patent application year rather than

rant year because we are interested in when an inventor generates the

nvention, not when it is first recognized. 9 We only consider granted
7 We only retain establishments that have five times more employees than all 

ther establishments of the same firm in the CSA combined. 
8 See Online Appendix A.1.3. 
9 Given the time lag between patent application filings and USPTO decisions 

n whether to grant patents, the patent database is necessarily incomplete in 

he years leading up to 2012 since some patent applications had not yet been 
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Table 2 

Pre- and Post-Relocation Summary Statistics . Summary statistics at the 

inventor–firm level. The results are based on 3445 unique inventor–firm pairs 

used in our main analyses and compare their average values before firm reloca- 

tions (i.e., Pre-Relocation) and after relocations (i.e., Post-Relocation). Distance 

is in kilometers. 

Mean Std. Dev. Min Median Max 

Pre-Relocation 

Patent Count 0.858 0.879 0.000 0.600 8.333 

Scaled Citation 1.365 2.561 0.000 0.491 30.892 

Generality 0.399 0.495 0.000 0.250 4.340 

Originality 0.206 0.331 0.000 0.087 4.775 

Payment Count 1.816 2.085 0.000 1.312 15.333 

Distance 21.456 16.166 0.000 17.184 98.813 

Post-Relocation 

Patent Count 0.328 0.654 0.000 0.000 9.000 

Scaled Citation 0.633 2.463 0.000 0.000 81.801 

Generality 0.128 0.334 0.000 0.000 6.362 

Originality 0.079 0.212 0.000 0.000 3.802 

Payment Count 0.589 1.300 0.000 0.000 23.611 

Distance 21.607 15.919 0.001 17.463 99.908 
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atents, to ensure that the inventions satisfy a minimum quality thresh-

ld as determined by the USPTO. 10 Our patent quantity measure, Patent

ount , is the number of annual granted patents to the focal inventor–

rm, applied for in the focal year. 

Nevertheless, granted patents do differ in importance and quality

 Hall et al., 2005 ). To account for quality, we adopt standard mea-

ures used in the innovation literature ( Hall et al., 2001; Bessen, 2008 ).

caled Citation re-scales the total number of forward citations to patents

y considering year and category fixed effects to control for mechan-

cal differences in propensity to cite. 11 Citations proxy for a patent’s

cientific quality: the cited patent both conceptually forms part of ex-

sting knowledge that the citing patent builds upon and legally consti-

utes prior art that limits the applicability of claims in the citing patent.

rajtenberg (1990) provides empirical evidence that the number of ci-

ations represents value and novelty of innovation. Two other measures

f patent scientific quality are Generality and Originality scores, intro-

uced by Trajtenberg et al. (1997) . Generality scores measure whether a

atent is cited by subsequent patents from a wide range of technologi-

al categories, whereas Originality scores measure whether a patent cites

any prior patents from different technological categories. These two

easures represent innovation diversity. Generality represents whether

 patent has a potential to be applied in various innovations. Originality

ndicates whether a patent uses a diverse mix of pre-existing innovations

o achieve a unique invention. 12 

Beyond citation-based quality measures, we leverage patent mainte-

ance fee data from 1980 to 2019 to build another measure of patent

uality regarding market value, called Payment Count . We build on prior

ork by Pakes (1986) and Bessen (2008) that leverage this data. The

SPTO website states that “maintenance fees are required to keep in

orce all utility and reissue utility patents based on applications filed

n or after December 12, 1980. ” In short, to keep patents in force and

aluable to the patent owner, patent owners pay maintenance fees 3.5,

.5, and 11.5 years after the date of patent grant. Because the fee more

han doubles for each subsequent renewal, we consecutively assume that

he economic value of a patent is monotonically and positively related

o the number of maintenance fee payments made. Hence, we use the

umber of maintenance fee payments, Payment Count , made by a firm to

enew a patent as a measure of the patent’s economic value. To avoid the

runcation problems associated with newly granted patents, we adjust

he raw number of payments by considering the conditional probability

atrix. 13 

.2.2. Main independent variable: Workplace–home distance 

Using the panel of matched inventor–firm pairs, we measure com-

uting distance between an inventor’s workplace and home, with our
ranted. Assuming that the USPTO’s idiosyncratic time lag is consistent within- 

ndustry, this sampling consideration should impact inventors working in the 

ame business establishment equally and not bias our estimation results. 
10 In an investigation of patent applications filed between 1996 and 2005, 

arley et al. (2015) find that around 55% of all patent applications are eventu- 

lly granted, suggesting that granted patents do satisfy some minimum quality 

hreshold. 
11 Trajtenberg et al. (1997) document this adjustment process as a way to “re- 

cale ” citations, and this motivates the variable name, Scaled Citation . This vari- 

ble is also used by Bernstein (2015) . The citation information is originally at 

he patent level. Because our final data is at the inventor–firm–year level, we av- 

rage Scaled Citation by each inventor–firm pair at a given year. This conversion 

ethod applies to all the other quality measures. 
12 Mathematically, Generality for patent 𝑖 is: 

 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑡𝑦 𝑖 = 1 − 
𝑛 𝑖 ∑

𝑗 

𝑠 2 
𝑖𝑗 

(1) 

here 𝑠 𝑖𝑗 is the share of citations received by patent 𝑖 that belong to patent 

ategory 𝑗, out of 𝑛 𝑗 patent categories. Originality is defined similarly, except 

hat it uses citations made by patent 𝑖 to patent categories 𝑗. 
13 Online Appendix A.4 details the construction of the Payment Count variable. 
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rimary independent variable Distance reflecting the geodesic distance:

he shortest path between two points on the curved surface of the Earth

etween inventor’s workplace and home. 14 We use geodesic distance

s our main measure of commuting distance because it is parsimonious

nd fixed over time. 15 

.3. Descriptive analysis 

.3.1. Geographic distribution 

Fig. 1 shows the distribution of workplace–home Distance . The distri-

ution skews towards shorter commutes, and its mode is around 10 km

ith substantially fewer observations at greater distances. The major-

ty of inventors in our sample have a commuting distance of less than

8km. This distribution is consistent with studies by the U.S. Depart-

ent of Transportation (e.g., U.S. Government Bureau of Transporta-

ion Statistics, 2003 ), suggesting that the matching process generated

ensible workplaces-home matches for the inventors. 

Table 1 shows the distribution of our observations between CSAs,

ocusing on the six largest CSAs by total population. Roughly a third of

ll inventor–firm pairs in our sample are from the San Jose-San Fran-

isco Bay (CA) area, representing Silicon Valley and the presumed heart

f the U.S. technology industry. The proportion of Silicon Valley in our

ample is similar to its portion in the universe of inventors filing with

he USPTO, suggesting that the geographic distribution of our matched

nventors is comparable to the distribution of all U.S. inventors. 

.3.2. Summary statistics: Pre- and post-relocation 

Table 2 shows summary statistics for our final sample at the

nventor–firm pair level, taking the pre- and post-relocation averages. In

oth periods, the mean values of productivity measures are well above

heir median values. This finding suggests that patent outcomes in our

ample are skewed with a long tail of very productive inventors, consis-

ent with prior literature (e.g., Akcigit et al., 2016 ). 
14 We use Vincenty (1975) equations for a mathematical model of the Earth. 
15 We also create two other commuting distance measures based on the as- 

umption that the inventor might be driving or taking public transit to work. 

rive Distance is the shortest route for a motor vehicle, i.e., via roads that are 

egal to drive on, between the inventor’s home and workplace. Drive Duration 

s the estimated fastest time it takes to drive or take public transit between the 

nventor’s home and workplace, accounting for speed limits and historical traf- 

c conditions. Along with the main measure Distance , these three commuting 

istance measures are highly correlated (i.e., correlations are greater than 0.9), 

nd the regression estimates based on Drive Distance and Drive Duration are con- 

istent with the main results based on Distance . See Online Appendix A.7.6. 
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Fig. 1. Distribution of Workplace-Home Distance . Frequency distribution at the inventor–firm level. The variable Distance represents geodesic distance in kilo- 

meters (km) between workplace and home prior to firm relocations. 

 

t  

r  

t  

t  

r  

d  

H  

d  

c  

o

2

 

v  

t  

s  

t  

h  

p

h  

c

h  

T  

f

 

b  

a

s

a

o

t

t

f

c  

l  

m  

i  

C  

t  

w  

t  

o  

l  

t

2

 

q  

o  

i  

d  

l

 

s  

t  

s  

e

3

We also find that all the inventor productivity measures decline af-

er firm relocation. While some of this decline in productivity post-

elocation is due to truncation bias stemming from the application-grant

ime lag of patents, some might be genuine and related to the reloca-

ion itself. On the other hand, the mean commuting distance remains

oughly constant after relocation, and this shows that the relocation-

riven positive and negative distance shocks are generally comparable.

ence, we find a discrepancy that the overall productivity measures

ecline even though the overall distance remains unchanged. This dis-

repancy implies that the negative distance shock has a stronger impact

n productivity than the positive shock does. 16 

.3.3. Balance test 

Table 3 reports the balance test results for inventor–firm–year obser-

ations prior to a workplace relocation event, divided by the direction of

he commuting distance shock. Columns (4–6) show the results of two-

ample t -tests for equality of means between these three groups. Prior

o the workplace relocation, inventors in the closer and farther groups

ave statistically indistinguishable productivity in most cases. Unsur-

risingly, these two groups differ significantly in terms of workplace–

ome Distance : inventors who live closer to the workplace are me-

hanically more likely to experience an increase in their workplace–

ome Distance than for inventors who previously lived farther away.

able 3 shows that Inventor Pre-Relocation Income is somewhat higher

or the farther group than for the closer group. 17 

The systematic differences in Inventor Pre-Relocation Income need to

e addressed. After further investigation, we find that these differences
16 Online Appendix A.7.2 further investigates this heterogeneity. 
17 We obtain limited income information by matching housing transactions 

gainst loan application data in the Home Mortgage Disclosure Act files, as de- 

cribed in Ferreira and Gyourko (2015) . Our income data consists of gross wage 

nd some additional non-labor income, such as interests and dividends. We only 

bserve pre-relocation income data: inventor income is revealed when an inven- 

or makes a housing transaction, but we study the inventors who do not change 

heir home. Those inventors, by definition, make housing transactions only be- 

ore relocation. 

 

c  

m  

k

3

 

t  
an be explained by two facts acting together. First, the average estab-

ishment tends to be moving away from city center, with the average

ove being 2.55 km away. Second, higher-income and more-productive

nventors preferentially live in suburb areas: Fig. 2 plots average Patent

ount and Inventor Pre-Relocation Income against distance from home to

he central city. Therefore, inventors whose firm on average moves to-

ards their home are more likely to live in the suburbs, and they tend

o have higher Inventor Pre-Relocation Income than inventors whose firm

n average moves away from their home. Our identification strategy al-

eviates this concern by including inventor–firm fixed effects to absorb

ime-invariant differences between inventors. 

.3.4. Non-parametric estimation 

Fig. 3 presents a non-parametric estimation of our main research

uestion, relating workplace–home Distance with Patent Count with-

ut controlling for anything. Using the full sample of 3445 matched

nventor–firm pairs, Fig. 3 shows a clear negative correlation between

istance and productivity. The patenting rate declines approximately

inearly and steadily with increasing workplace–home distance. 

This negative correlation does not yet imply any causal relationship

ince endogenous sorting of inventors and firms potentially confounds

he basic observed relationship. The next section details the empirical

trategy for causal identification in light of these possible confounding

ffects. 

. Empirical design 

We first motivate the need for our identification strategy by dis-

ussing the main issue of endogenous sorting. We then describe our

ethods and assumptions, particularly with respect to the labor mar-

et. 

.1. Endogeneity: Residential sorting 

For estimating the causal effect of commuting distance on inven-

or productivity, the main challenge is that the location choices of
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Table 3 

Balance Test by Direction of Distance Shocks . Summary statistics at the inventor–firm level. Pre-relocation means are 

provided with standard errors in parentheses and number of inventor–firm pairs in brackets. Closer/Same/Farther columns 

indicate subsamples for which commuting distance decreased by more than 1 km, stayed the same (i.e., changed by less 

than 1 km), and increased by more than 1 km, respectively. Distance is in kilometers, and Inventor Pre-Relocation Income is 

in 1,000 U.S. dollars. 

(1) (2) (3) p -value 

Closer Same Farther (1) vs. (3) (1) vs. (2) (2) vs. (3) 

Patent Count 0.850 0.846 0.869 0.547 0.928 0.591 

(0.024) (0.036) (0.023) 

[1348] [528] [1569] 

Scaled Citation 1.380 1.272 1.383 0.970 0.415 0.372 

(0.073) (0.098) (0.064) 

[1348] [529] [1569] 

Generality 0.391 0.415 0.401 0.598 0.333 0.563 

(0.013) (0.022) (0.013) 

[1348] [529] [1569] 

Originality 0.193 0.195 0.220 0.028 0.899 0.141 

(0.008) (0.013) (0.009) 

[1348] [529] [1569] 

Payment Count 1.808 1.817 1.823 0.854 0.937 0.956 

(0.057) (0.089) (0.052) 

[1348] [529] [1569] 

Distance 26.47 19.38 17.85 0.000 0.000 0.041 

(0.046) (0.067) (0.037) 

[1348] [529] [1569] 

Inventor Pre-Relocation Income 131.881 130.837 118.807 0.035 0.918 0.026 

(6.011) (5.281) (2.569) 

[599] [239] [711] 

Fig. 2. Residential Sorting by Distance to City Center . Binned scatter plots at the inventor level. The horizontal axes denote an inventor’s home-central city 

distance (in km), which is fixed over time because the main sample consists of the inventors who did not move their home locations. The vertical axis in the left 

graph denotes the average number of patents granted to an inventor (i.e., Average Patent Count ) and in the right graph measures an inventor’s income before firm 

relocations (i.e., Inventor Pre-Relocation Income ). Bins are formed for each nearest 5 km. 
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18 While this model implies a positive correlation between income and distance 

to the city center, i.e., the assumed commuting distance, Gutiérrez-i Puigar- 

nau et al. (2016) find a negative causal relationship between income on com- 

muting distance in a study of workers in Denmark, despite an observed posi- 

tive correlation between income and commuting distance documented in other 

empirical studies. Nevertheless, there are important contextual differences be- 

tween the United States, the context for our study, and European countries 

( Brueckner et al., 1999 ), which could result in a different pattern for the corre- 
oth inventors and firms are endogenously determined. Inventors en-

ogenously choose their place of residence based on a long list of fac-

ors in addition to commuting costs ( Deitz, 1998 ), including amenities

 Diamond, 2016 ) and price of homes ( Dubin and Sung, 1987 ). Factors

hat firms consider in their office location decision include office rent

nd nearby productive amenities, in addition to geographic accessibil-

ty. Therefore, a simple regression of inventor productivity on commut-

ng distance would be biased due to sorting. 

We first consider the endogenous location decision of inventors mo-

ivated by the classic monocentric city model. The classic model con-

ists of rich and poor households, and their income difference makes the

ich demand more/larger housing than the poor under the same housing

l

rice. This mechanism results in residential sorting where the rich live in

he suburbs, and the poor are in the city center (e.g., Brueckner, 2001 ). 18 
ational and causal relationships between income and commuting distance. 
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Fig. 3. Descriptive Relationship Between 

Workplace-Home Distance and Patent 

Count . Binned scatter plots at the inventor–

year level. Both horizontal and vertical axes 

represent values prior to firm relocations. Bins 

are formed for each nearest 1 km. 
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ur model mirrors the standard monocentric model by distinguishing

nventors by skill (i.e., high- and low-skilled) and using the income dif-

erence between high- and low-skilled inventors. In addition, knowledge

orkers tend to reside in the suburbs due to their stronger preferences

or schools and children’s education ( Frenkel et al., 2013 ), whereas

oung college graduates who are relatively less-skilled prefer living

lose to the city center because of better labor market opportunities

 Van Vuuren, 2018 ) facilitated by a labor market network based on res-

dential proximity ( Hellerstein et al., 2011 ). Thus, we assume a certain

ase of inventor sorting where high-skilled inventors reside in outlying

uburbs, and low-skilled inventors live close to the center. 19 

We now demonstrate how the inventor sorting brings about a biased

erm in the estimation to measure the impact of commuting distance

n productivity. Consider an inventor 𝑖 working for firm 𝑗, living at a

istance 𝑑 𝑖𝑗 from the firm. Assume perfectly competitive labor markets

here inventors are paid their marginal productivity of labor. For inven-

ors heterogeneous in their productivity type 𝜃𝑖 , inventor productivity

 𝑖𝑗 is determined by the following equation: 

 𝑖𝑗 = 𝜃𝑖𝑗 + 𝛽𝑖 𝑑 𝑖𝑗 + 𝛿𝑗 (2)

here 𝜃𝑖𝑗 is an inventor–firm commuting distance-invariant productiv-

ty parameter that denotes the quality of the inventor–firm match, 𝛽𝑖 is

 measure of how distance affects individual-specific productivity, and

𝑗 is a firm-specific distance-invariant productivity parameter. This for-

ulation allows for time-invariant heterogeneous distance effects across

oth inventors and firms, i.e., the two parameters differ by each inventor

nd each firm. We model inventor sorting by skill level and home-to-city

enter distance. For each city 𝑚, let 𝑥 𝑚𝑖 be distance between inventor 𝑖 ’s

ome and the center of 𝑚 . Then, inventor–firm specific productivity pa-

ameters are drawn from the real interval such that the distribution of
19 On the other hand, high-skilled inventors may choose to live closer to the 

enter because they have higher time costs of commuting, which would induce 

 bias in the opposite direction. Regardless of the direction, our identification 

trategy eliminates the confounding effects in inventor sorting. In addition, On- 

ine Appendix A.3 modifies this inventor sorting model by focusing only on skill 

ifferences between inventors without economic considerations such as income 

nd amenities. 

I  

t  

j  

r

N

s

ndividual types is determined by: 

𝑖𝑗 = 𝛼0 + 𝛼1 𝑥 𝑚𝑖 + 𝜖𝑖𝑗 (3)

here 𝛼1 > 0 due to inventor sorting, i.e., more productive inventors live

arther from the city center, 𝛼0 is a constant, 𝜖𝑖𝑗 is a commuting distance-

nvariant match quality term, and 𝐸( 𝑥 𝑚𝑖 𝜖𝑖𝑗 ) = 0 . Thus, there is sorting in

ity 𝑚 of inventor types according to distance from the city center. If the

rm is located at the center of the city, then 𝑥 𝑚𝑖 = 𝑑 𝑖𝑗 . Assume that firms

end to be located closer to the city centers than homes, with a positive

orrelation between 𝑥 𝑚𝑖 and 𝑑 𝑖𝑗 on average. In this case, inventor 𝑖 ’s

istance to the city center correlates with distance to the firm, with 𝑥 𝑚𝑖 =
𝑖 𝑑 𝑖𝑗 + 𝜇𝑖𝑗 , where 𝛾𝑖 > 0 . Plugging this expression into Eq. 3 combined

ith Eq. 2 , we have: 

 𝑖𝑗 = 𝛼0 + ( 𝛽𝑖 + 𝛼1 𝛾𝑖 ) 𝑑 𝑖𝑗 + 𝛿𝑗 + 𝛼1 𝜇𝑖𝑗 + 𝜖𝑖𝑗 . (4)

hus, the OLS estimate of 𝛽𝑖 using Eq. 2 would be biased if 𝛼1 > 0 due to

nventor sorting and if 𝛾𝑖 > 0 due to firms concentrating in a city center

way from inventor residential locations. 

.2. Identification strategy 

We address potential endogeneity by using firm relocations as ex-

genous shocks to commuting distance. 20 Fig. 4 shows the distribution

f distance changes due to firm relocations: we observe large variation

n the distance changes with a number of inventors who experience a

istance shock of more than 10 km. 

The crucial assumption for this identification strategy is imperfect

nventor resorting after firm relocations, due to factors like home mov-

ng costs and heterogenous match quality between inventors and firms.

n other words, some inventors prefer to stay at their home and with

heir employer even after a distance shock because their moving and

ob searching costs are greater than the benefits from resorting to an
20 Neumark et al. (2006) note that state or local policies are rarely aimed di- 

ectly at attracting relocating businesses but do exist on a case-by-case basis. 

evertheless, the design of our main data sample tends to exclude any of these 

ituations. 



H. Xiao, A. Wu and J. Kim Journal of Urban Economics 121 (2021) 103300 

Fig. 4. Distribution of Workplace-Home Distance Changes . Frequency distribution at the inventor–firm level. The horizontal axis indicates the difference before 

and after firm relocations in geodesic distance between workplace and home (in km). 
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22 
lternative home or employer. 21 For example, Teradyne Inc., a major

igh-tech producer of electronic component test equipment, moved its

eadquarters from Boston, MA to North Reading, MA in 2006. There

re 10 inventors we identify as working with the company both before

nd after the relocation, and they did not move their residential loca-

ion. Thus, they experienced changes in commuting distance solely due

o the relocation. This within–inventor–firm but across-time variation in

orkplace–home distance lies at the core of our identification strategy.

he measured average effect in this sample may be a lower bound for

he population-level effect because an inventor who moves her home

ocation or changes her job is more likely to be sensitive to change in

ommuting distance than an inventor who changes neither her home

or job. Section 4.3 further documents this effect. 

With this particular sample, we estimate a difference-in-differences-

tyle regression model to investigate how changes in commuting dis-

ance affect inventor productivity. Inventor–firm pair fixed effects and

ear fixed effects are included so that firm relocations are the only

ource of commuting distance change in the within–inventor–firm anal-

sis. The precise specification for inventor 𝑖, firm 𝑗, and year 𝑡 is as

ollows: 

 𝑖𝑗𝑡 = 𝛽𝑑 𝑖𝑗𝑡 + 𝛼𝑖𝑗 + 𝛾𝑡 + 𝛿𝑗𝑡 + 𝜖𝑖𝑗𝑡 (5)

here 𝑌 𝑖𝑗𝑡 is the dependent variable for inventor productivity regarding

atenting for individual 𝑖 working for firm 𝑗 in year 𝑡 . 𝑑 𝑖𝑗𝑡 is the dis-

ance between inventor 𝑖 ’s home and firm 𝑗’s office in year 𝑡 . 𝛼𝑖𝑗 is an

nventor–firm fixed effect that controls for the inherent productivity dif-

erences between individuals, taking into account the matching quality

etween inventor and firm. 𝛾𝑡 absorbs year fixed effects. 𝛿𝑗𝑡 controls for

rm location fixed effects before and after relocation at the ZIP code

evel. The firm location fixed effects account for potential differences

n time-invariant productive amenities near the office before and after

elocations; for example, a different set of nearby firms may provide

ifferent knowledge spillovers. 𝜖𝑖𝑗𝑡 is the error term. We cluster robust

tandard errors at the inventor–firm pair level. 
21 Aggregate job stability in the United States has remained relatively consis- 

ent over time ( Diebold et al., 1997; Neumark et al., 1999 ). 

i

t

fi

fi

The identification strategy assumes that there are no other events

hat occur simultaneously with firm relocations. 22 Correlated events

ay differently affect the productivity of inventors whose commuting

istance increases versus those whose commuting distance decreases.

owever, the balance test results in Table 3 in Section 2.3.3 show that

nventors who received a positive distance shock are not significantly

ifferent from inventors who received a negative distance shock in terms

f patent productivity. Section 4.2.2 provides additional tests that ac-

ount for time-varying firm characteristics. 

.3. Imperfect labor market 

The interpretation of our estimated coefficients differs depending

n labor market assumptions. In our base econometric model, we as-

ume perfectly competitive labor markets where inventors are paid their

arginal productivity of labor. In this case, if inventor wage does not de-

end on commuting distance beyond the direct impact that commuting

as on productivity, we estimate the “pure ” causal effect of commuting

n inventor productivity. 

However, in imperfect urban labor markets, firms have market

ower and pay inventors a wage below their marginal productivity.

hey may also compensate inventors for longer commutes by paying

 higher wage. This wage compensation for longer commutes would in-

entivize these inventors facing longer commutes to stay at the firm and

rovide more effort ( Zax, 1991 ). Mulalic et al. (2014) empirically find

vidence of commuting-based wage compensation in Denmark. 

If we assume that firms adjust wage compensation for inventor com-

utes to provide an efficiency wage and incentivize effort ( Ross and

enou, 2008 ), then our results can be interpreted as a total effect: our

stimates combine the “pure ” causal effect of commuting on productiv-

ty and the countering effect of a higher efficiency wage. Even for in-

entors who remain at the same home and the same job, our estimates
Although we assume that there is no simultaneous event confounding the 

dentification strategy, a firm could make a relocation decision partly based on 

he past performance of its inventors. Online Appendix A.5 investigates whether 

rms relocate endogenously towards better-performing inventors. We do not 

nd any evidence that firms relocate in this way. 
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Table 4 

Effect of Commuting on Inventor Productivity —Quantity . Fixed-effects OLS 

regressions at the inventor–firm–year level. Dependent variable Patent Count is 

the count of granted patents for an inventor–firm per year. Independent variable 

Distance is geodesic distance between workplace and home (in 10 km). Robust 

standard errors clustered at the inventor–firm level are shown in parentheses. 
∗ p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗ p < 0.01. 

D.V.: Patent Count (1) (2) (3) (4) 

Distance -0.013 ∗ -0.039 ∗ ∗ -0.030 ∗ ∗ -0.041 ∗ ∗ 

(0.007) (0.016) (0.014) (0.019) 

Inventor–Firm FE No Yes Yes Yes 

Year FE No No Yes Yes 

Firm Location FE No No No Yes 

R 2 0.000 0.335 0.386 0.415 

Inventor–Firm Count 3445 3445 3445 3445 

Observations 22,917 22,917 22,917 22,917 
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23 We confirm this by plotting pre-relocation inventor income and home price 

against commuting distance. We find a strong positive correlation between the 

two. 
24 Hereafter, we use Patent Count, Scaled Citation , and Payment Count as the 

three main innovation measures. Patent Count intends to measure the quantity 

of innovation, whereas Scaled Citation intends to captures innovation quality 

through the intellectual influence of patents on future inventions. Payment Count 

serves as a proxy for the economic value of patented innovations. 
epresent a lower bound for the “pure ” effect of commuting on inventor

roductivity, when taking into account this type of wage compensation.

We consider wage compensation in an imperfect labor market and

nvestigate how this consideration changes our empirical model. In an

mperfect urban labor market, firms have monopsony power over wages

ue to the limited number of jobs available in a certain geographic area

e.g., Manning, 2003 ). Assume that firms pay inventors an efficiency

age with longer commuting distance to discourage them from shirk-

ng ( Ross and Zenou, 2008 ). We define a simplified wage equation as

ollows: 

 𝑖𝑗 = 𝑤 

𝑚 
𝑖𝑗 
+ 𝑒𝑤 𝑖𝑗 𝑑 𝑖𝑗 

here 𝑤 

𝑚 
𝑖𝑗 

is the market-clearing wage and 𝑒𝑤 𝑖𝑗 is the per-unit commut-

ng distance efficiency wage that firm 𝑗 pays to inventor 𝑖 . Because only

he excess wage beyond the market-clearing level can affect productiv-

ty by preventing inventors from shirking, inventor productivity then

ecomes: 

 𝑖𝑗 = 𝜃𝑖𝑗 + ( 𝛽𝑖 + 𝑒𝑤 𝑖𝑗 ) 𝑑 𝑖𝑗 . 

hen, Eq. 4 in Section 3.1 becomes: 

 𝑖𝑗 = 𝛼0 + ( 𝛽𝑖 + 𝑒𝑤 𝑖𝑗 + 𝛼1 𝛾𝑖 ) 𝑑 𝑖𝑗 + 𝛿𝑗 + 𝛼1 𝜇𝑖𝑗 + 𝜖𝑖𝑗 . 

n this case of imperfect labor markets, the existence of non-zero job

earch cost acts in conjunction with the existence of infra-marginal in-

entors due to heterogeneity in inventor–firm match quality 𝜖𝑖𝑗 to keep

ome inventors from moving to a different job after firm relocation. Just

s before, positive moving costs keep some inventors from moving to

 different residential location. Looking at this subsample of inventors

ho do not re-sort, we subtract their productivity before and after the

ove to get: 

𝑙 𝑖𝑗 = ( 𝛽𝑖 + 𝑒𝑤 𝑖𝑗 )Δ𝑑 𝑖𝑗 . 

iven that 𝑒𝑤 𝑖𝑗 should always be the opposite sign of 𝛽𝑖 , this implies that

ur estimates represent a lower bound for the weighted “pure ” effect of

ommuting distance on inventor productivity. 

. Results 

We first present the main results on outcomes of patent quantity

nd quality. We then explore heterogeneous effects for the highest-

erforming inventors. Finally, we show that the main results are robust

o alternative specifications. 

.1. Main results 

.1.1. Patenting quantity 

Table 4 shows estimated coefficients for our main difference-in-

ifferences specifications. Column (1) shows that Distance is negatively

orrelated with Patent Count , as expected given the negative slope in
ig. 3 . The size of the coefficient, however, triples after controlling for

nventor–firm fixed effects in Column (2) and becomes more statisti-

ally significant. The difference between Columns (1) and (2) suggests

hat more-skilled inventors endogenously choose residential locations

arther away from their workplace than less-skilled inventors, which bi-

ses the OLS coefficient in Column (1) downward. 23 

The result remains highly significant when we control for year fixed

ffects in Column (3) and firm location fixed effects in Column (4), sug-

esting that endogenous location choice by firms in pursuit of higher

ime-invariant productive amenities is not driving our results. Column

4) represents our preferred specification, with every 10 km increase in

istance causing an average decrease in inventor productivity of 0.041

atents per year. In percentage terms, this represents a 5% decrease

n inventor productivity per 10 km, compared with the average 0.86

atents per year per inventor–firm pair before the move. 

.1.2. Patenting quality 

Turning to measures of patent quality, we find the same negative

ffect of commuting distance on inventor productivity. Column (1) in

able 5 shows that a 10 km increase in commuting distance causes

 0.094 decrease in Scaled Citations , roughly 7% of the pre-relocation

ean. This suggests that the decrease in Patent Count is not driven by

nventors applying for fewer patents but by applying for more-impactful

atents. The results for Generality and Originality in Columns (2) and

3) are consistent with this interpretation: the overall scientific quality

easures fall with increasing commuting distance, in step with Patent

ount . Testing for patent economic value proxied by the maintenance

ee payments, Payment Count , shows a potential decrease. Although the

oefficient is not statistically significant, it is likely due to the lack of

ower in this specification; the last maintenance fee payment is only

equired 11.5 years after the patent grant date, resulting in severe data

runcation. 

.1.3. Inventor heterogeneity 

We explore suggestive evidence for potential underlying mechanisms

riving our results by investigating heterogeneous effects of commuting

istance on inventor productivity. Given that highest-performing inven-

ors may have a disproportionate impact on a firm’s innovation output

e.g., Akcigit et al., 2016 ), we test whether the commuting distance ef-

ect is driven by these outstanding inventors. Top Inventor takes a value

f 1 for inventors whose cumulative number of granted patents rank in

he top 10% of our sample, and 0 otherwise. We include the interaction

erm, Distance × Top Inventors , to estimate the heterogeneous effect. 

Table 6 shows that the negative effect of distance on inventor produc-

ivity is largely driven by the highest-performing inventors. Column (1)

hows that Patent Count of the highest-performing inventors decreases

y 0.159 more patents per year per 10 km than the other 90% of less-

roductive inventors, whose coefficient is reduced to a statistically in-

ignificant 0.026 patents per year per 10 km. This large discrepancy is

eplicated with the two main patent quality measures, Scaled Citation

nd Payment Count , in Columns (2) and (3) respectively. 24 

To further investigate the heterogeneous effects, we consider a dif-

erence in mean productivity between Top Inventors and average inven-

ors. Because mean productivity is higher for Top Inventors , their oppor-

unity cost for every work hour lost to their commute would also be

igher. However, even after taking their higher mean into account, Top

nventors still suffer more proportionally than the average inventor: a
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Table 5 

Effect of Commuting on Inventor Productivity —Quality . Fixed-effects OLS regressions at the inventor–firm–year level. 

Scaled Citation re-scales the total number of forward citations to patents per inventor–firm pair per year by considering year 

and category fixed effects. Generality scores measure whether a patent is cited by subsequent patents from a wide range of 

technological categories per inventor–firm pair per year. Originality scores measure whether a patent cites many prior patents 

from different technological categories per inventor–firm pair per year. Payment Count calculates the number of maintenance 

fee payments made by a firm per inventor–firm pair per year. Independent variable Distance is geodesic distance between 

workplace and home measured in 10 km. Robust standard errors clustered at the inventor–firm level are shown in parentheses. 
∗ p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗ p < 0.01. 

(1) (2) (3) (4) 

D.V.: Scaled Citation Generality Originality Payment Count 

Distance -0.094 ∗ -0.025 ∗ ∗ -0.013 ∗ ∗ -0.047 

(0.049) (0.011) (0.006) (0.042) 

Mean of D.V. (Pre-Relocation) 1.365 0.399 0.206 1.684 

Inventor–Firm FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Firm Location FE Yes Yes Yes Yes 

R 2 0.381 0.387 0.392 0.417 

Inventor–Firm Count 3445 3445 3445 3445 

Observations 22,863 22,863 22,863 22,863 

Table 6 

Effect of Commuting on Inventor Productivity —Top Inventor . Fixed-effects OLS regressions at the inventor–firm–year 

level. Top Inventor indicates inventors in the top decile in terms of average patent count. Robust standard errors clustered at 

the inventor–firm level are shown in parentheses. ∗ p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗ p < 0.01. 

(1) (2) (3) 

D.V.: Patent Count Scaled Citation Payment Count 

Distance -0.026 -0.057 -0.018 

(0.019) (0.048) (0.041) 

Distance × Top Inventor -0.159 ∗ ∗ -0.407 ∗ ∗ -0.314 ∗ ∗ 

(0.073) (0.172) (0.149) 

Mean of D.V. (Pre-Relocation): Ordinary Inventors 0.781 1.264 1.533 

Mean of D.V. (Pre-Relocation): Top Inventors 1.670 2.421 3.276 

Inventor–Firm FE Yes Yes Yes 

Year FE Yes Yes Yes 

Firm Location FE Yes Yes Yes 

R 2 0.416 0.381 0.418 

Inventor–Firm Count 3445 3445 3445 

Observations 22,863 22,863 22,863 
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25 We also test for pre-relocation trends in our main regressions by controlling 

for the pre-relocation trends in our main estimation. Given that these regressions 

occur at the inventor–firm–year level, we add a dichotomous indicator variable 

for pre-relocation periods to the main models so that we can control for poten- 

tial pre-relocation fixed effects in the within-inventor–firm-level analysis. The 

results remain unchanged with the additional fixed effects. 
0 km increase in Distance causes a 10% drop in productivity, versus

ess than 4% for less-productive inventors. This finding suggests that

here is a moderating mechanism driving stronger distance effects to

he highest-performing inventors. For example, the cost of effort could

ncrease more steeply with commuting distance for the top versus the

verage inventors. 

.2. Robustness checks 

.2.1. Pre-trend of inventor performance 

One of the underlying assumptions in our inventor sample is that

nventor performance is not correlated with the direction of a commut-

ng distance change resulting from a firm relocation. To validate this

ssumption, we evaluate whether there are parallel pre-trends (prior to

rm relocation) in innovation performance between the inventors expe-

iencing positive distance shocks (i.e., farther commute group) and the

thers (i.e., closer or same commute groups). We adopt the standard test

or parallel trends by estimating a generalized difference-in-differences

pecification that looks at yearly average of Patent Count by direction of

istance shock. We estimate the following equation for inventor 𝑖, firm

, year relative to workplace relocation event 𝑦, and year 𝑡 : 

 𝑖𝑗𝑦𝑡 = 𝛽𝐹𝑎𝑟𝑡ℎ𝑒𝑟 
𝑖𝑡𝑦 

𝐹 𝑎𝑟𝑡ℎ𝑒𝑟 𝐶𝑜𝑚𝑚𝑢𝑡𝑒 𝑖𝑡 ∗ 𝜂𝑦 + 𝛼𝑖𝑗 + 𝜂𝑦 + 𝛾𝑡 + 𝛿𝑗𝑡 + 𝜖𝑖𝑗𝑡 (6)

here 𝐹 𝑎𝑟𝑡ℎ𝑒𝑟 𝐶𝑜𝑚𝑚𝑢𝑡𝑒 𝑖𝑡 equals 1 for inventor–firm pairs for whom the

orkplace relocation increased the workplace–home geodesic distance

y 1 km or more, and 0 otherwise. 𝜂𝑦 is an elapsed year fixed effect

aking the value of 1 for the year 𝑦 ∈ [−4 , 5] relative to workplace relo-
ation event, and 0 otherwise. 𝛼𝑖𝑗 is an inventor–firm fixed effect, 𝛾𝑡 is

 year fixed effect, and 𝛿𝑗𝑡 is a firm location fixed effect. 

Fig. 5 shows the estimated coefficients of 𝛽𝐹𝑎𝑟𝑡ℎ𝑒𝑟 
𝑖𝑡𝑦 

from Eq. 6 . We do

ot observe any upward (downward) pre-relocation trends for the in-

entors who experience closer (farther) commuting distance due to re-

ocation. 25 Furthermore, productivity for inventors with farther distance

fter relocation falls during the year of the relocation and afterwards re-

ains lower relative to the productivity of those with closer distance.

hese findings confirm the assumption that inventor innovation perfor-

ance does not depend on the direction of commuting distance shocks.

.2.2. Firm-level controls 

We test the robustness of our results by including more firm-level

ontrol variables. We manually search all the 1068 firms used in

ur main analysis in the Compustat data and find financial informa-

ion for the 405 firms (38%) that have ever gone public, resulting in

218 matched inventor–firm–year observations. Based on the Compu-

tat data, we obtain firm Turnover, Market Value , and Assets . From the

nfoUSA data, we obtain Employee Count and Sales Volume at the estab-



H. Xiao, A. Wu and J. Kim Journal of Urban Economics 121 (2021) 103300 

Fig. 5. Effect of Farther Commute Relative to Year of Workplace Relocation Event . Coefficient plot at the inventor–firm–year level. The coefficients are estimated 

by the fixed-effects OLS regression in Eq. 6 . Each dot indicates the difference in the number of granted patents produced by inventors between the inventors having 

a longer commute due to firm relocations as compared to the other inventors. The dots are plotted against years before and after firm relocations in the horizontal 

axis. 

Table 7 

Effect of Commuting on Inventor Productivity —Firm-Level Variables . Fixed-effects OLS regressions at the inventor–firm–year 

level with subsample observations matched to Compustat. The five self-explanatory firm control variables are added after taking 

logs. Robust standard errors clustered at the inventor–firm level are shown in parentheses. ∗ p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗ p < 0.01. 

(1) (2) (3) (4) (5) (6) 

D.V.: Patent Count Scaled Citation Payment Count 

Distance -0.060 ∗ ∗ -0.038 -0.077 -0.036 -0.111 -0.058 

(0.026) (0.025) (0.058) (0.058) (0.068) (0.066) 

Distance × Top Inventor -0.262 ∗ ∗ -0.467 ∗ ∗ -0.600 ∗ ∗ 

(0.114) (0.186) (0.280) 

Log Turnover -0.009 -0.009 -0.007 -0.008 0.017 0.016 

(0.027) (0.027) (0.088) (0.088) (0.054) (0.054) 

Log Market Value 0.031 0.031 -0.015 -0.016 0.050 0.049 

(0.032) (0.032) (0.115) (0.115) (0.073) (0.074) 

Log Assets 0.093 ∗ ∗ 0.094 ∗ ∗ 0.249 ∗ 0.251 ∗ 0.149 0.151 

(0.042) (0.042) (0.133) (0.133) (0.095) (0.095) 

Log Employee Count -0.012 -0.013 -0.002 -0.002 -0.026 -0.026 

(0.010) (0.010) (0.025) (0.025) (0.023) (0.023) 

Log Sales Volume -0.009 ∗ ∗ -0.009 ∗ ∗ -0.021 ∗ ∗ -0.020 ∗ ∗ -0.024 ∗ ∗ ∗ -0.024 ∗ ∗ ∗ 

(0.004) (0.004) (0.010) (0.010) (0.008) (0.008) 

Mean of D.V. (Pre-Relocation): All Inventors 0.858 1.365 1.816 

Mean of D.V. (Pre-Relocation): Ordinary Inventors 0.781 1.264 1.533 

Mean of D.V. (Pre-Relocation): Top Inventors 1.670 2.421 3.276 

Inventor–Firm FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Firm Location FE Yes Yes Yes Yes Yes Yes 

R 2 0.421 0.422 0.445 0.445 0.408 0.409 

Inventor–Firm Count 1493 1493 1493 1493 1493 1493 

Observations 9218 9218 9218 9218 9218 9218 
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ishment level. We log transform these variables because their distribu-

ions skew to the right. 26 

Table 7 shows the results of patent quantity and quality regressions

n this publicly-traded firm subsample. The estimated coefficients of

ommuting on inventor productivity are negative and significant, con-
26 We add 0.01 to the original values so that the zero values are not missing 

fter the log transformation. 

 

a  

a  

a  
istent with results from our full sample. Therefore, this result alleviates

he concern that there could be some unobserved firm-level variation

round relocation events correlated with inventor productivity. 

.2.3. Time-varying amenities 

Amenities can play an important role in inventor productivity

nd determining home location. First, Rauch (1993) finds that local

menities can affect productivity of workers; he treats human capital

s a local public good and finds a positive relationship between the
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Table 8 

Effect of Commuting on Inventor Productivity —Time-Varying Amenities . Fixed-effects OLS regressions at the inventor–

firm–year level. Instead of Year FE, Inventor Location × Year FE is added to control for time-varying amenity effects around 

residential locations of inventors. Robust standard errors clustered at the inventor–firm level are shown in parentheses. ∗ p < 

0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗ p < 0.01. 

(1) (2) (3) (4) (5) (6) 

D.V.: Patent Count Scaled Citation Payment Count 

Distance -0.055 ∗ ∗ -0.037 ∗ -0.103 ∗ -0.068 -0.070 -0.037 

(0.022) (0.021) (0.058) (0.057) (0.052) (0.051) 

Distance × Top Inventor -0.214 ∗ ∗ ∗ -0.430 ∗ ∗ -0.407 ∗ ∗ 

(0.082) (0.175) (0.175) 

Mean of D.V. (Pre-Relocation): All Inventors 0.858 1.365 1.816 

Mean of D.V. (Pre-Relocation): Ordinary Inventors 0.781 1.264 1.533 

Mean of D.V. (Pre-Relocation): Top Inventors 1.670 2.421 3.276 

Inventor–Firm FE Yes Yes Yes Yes Yes Yes 

Firm Location FE Yes Yes Yes Yes Yes Yes 

Inventor Location × Year FE Yes Yes Yes Yes Yes Yes 

R 2 0.466 0.467 0.431 0.431 0.460 0.460 

Inventor–Firm Count 3370 3370 3370 3370 3370 3370 

Observations 22,023 22,023 22,023 22,023 22,023 22,023 
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eographic concentration of human capital and productivity gains.

urthermore, Diamond (2016) shows an endogenous relationship be-

ween local amenities and skilled worker home locations, implying that

ocal amenities can affect location decisions of workers. If amenities

ary over time, these two channels would bias our results because the

urrent firm location fixed effects may not fully absorb the effects of

ime-varying amenities. 27 

To ensure that we isolate the effect of commuting distance, we need

o rule out the possibility that a differential change in amenities for in-

entors before and after relocation drives the main result. To account

or inventors’ residential urban amenities over time, we include resi-

ential location-by-year fixed effects, Inventor Location × Year FE, to

exibly control for any neighborhood-level residential amenities as they

ight change over time. In Table 8 , the estimated coefficients are still

ignificantly negative even after controlling for the granular Inventor

ocation × Year FE, suggesting that time-varying residential amenities

o not drive our results. 28 

.2.4. Additional tests 

We also conduct additional robustness tests in Online Appendix A.7.

e analyze subsamples for non-Silicon Valley regions, closer and far-

her relocation groups, single-authored patents, and bounded distance.

e also replace the main independent variable, Distance , with a cate-

orical variable based on relocation direction and alternative distance

easures such as driving distance and drive duration. We also estimate

on-linear models, i.e., including the squared term of Distance and using

onditional Poisson and negative binomial distributions for the depen-

ent variables. 

.3. Sample design and inventor home moving 

.3.1. Intuition 

Although our identification strategy seeks to rules out confounding

actors in the sample of inventors who did not move their homes, we

eed to confirm whether our findings for this set of inventors reflectthe
27 We also investigate the role of time-varying amenities at workplaces, based 

n the same lines of reasoning; amenities at workplaces can affect productivity 

f workers, and firms may consider this effect in their (re)location decisions. We 

onduct similar tests for the workplace-level amenities by including modified 

ime-varying fixed effects at firm locations. The results of these tests remain 

onsistent with the main results. 
28 We also consider additional fixed effects for residential amenities: difference 

n amenity effects before and after relocation (i.e., Inventor × Location FE) and 

ime-varying amenity effects (i.e., Inventor × Year FE). These fixed effects do 

ot change the main results. 
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roader set of inventors including those not in our sample. For exam-

le, if a better-performing inventor is more averse to longer commuting

istances, this inventor could move to a different home in response to

 firm relocation such that her commuting distance decreases or does

ot change. In that case, our sample of inventors who did not move

heir homes (i.e., non-moved inventors) may have a downward perfor-

ance bias compared to the inventors who moved their residential lo-

ations (i.e., moved inventors). To address this consideration for the

esign of the sample, as a first-order test, we investigate whether there

s any pre-firm-relocation performance difference between the moved

nd non-moved inventors. This section explores the performance trends

f these two groups of inventors prior to a firm relocation. 29 

.3.2. Empirical analysis 

We conduct a descriptive analysis that plots pre-firm-relocation per-

ormance trends of inventors who changed their home locations after

rm relocations (i.e., moved inventors, 𝑛 = 2 , 913 ) and those who did

ot (i.e., non-moved inventors, 𝑛 = 3 , 417 ). Fig. 6 presents binned scat-

er plots depicting the average inventor performance of these two inven-

or groups for the five years prior to their respective firm relocating. As

erformance measures, we use the three main patent-based measures of

nnovation quantity and quality, i.e., Patent Count, Scaled Citation , and

ayment Count . The unit of observation is an inventor–year dyad. Given

hat we want to explore the patterns of a possible trend while mini-

izing any limiting assumptions or restrictions, we exclude most of the

ontrols and fixed effects used in the main analyses, and we only include

ear fixed effects in the generation of the binned scatter plot. 

Across all three measures, we do not find any observable differ-

nces between the moved and the non-moved inventors in their pre-

rm-relocation performance trends. In addition, we note that the trends

ppear nearly flat for both categories of inventors: this reaffirms the

xpectation that the samples are well-balanced. In addition to this de-

criptive analysis, we conduct a more comprehensive regression analysis
29 Even if there is no pre-firm-relocation performance difference between the 

oved and non-moved inventors, it is possible for them to have different sensi- 

ivity to distance after a firm relocation. That is, the moved inventors could be 

ore sensitive to (and affected more by) longer commuting distance although 

hey were not necessarily better-performing than the non-moved inventors be- 

ore firm relocations. Because our available data cannot completely rule out this 

ossibility, we recommend a conservative interpretation of the main estimates 

s a lower bound of true distance effects on innovation performance. That said, 

e suspect that a potential difference in sensitivity would be limited since there 

s no observable performance difference between the groups. Online Appendix 

.6.2 conducts additional tests with an extended data sample to rule out this 

otential difference in sensitivity. 
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Fig. 6. Innovation Performance before Firm Relocations —Moved and Non- 

Moved Inventors . Binned scatter plots at the inventor–year level. The dark dots 

represent the inventors who moved their home locations (i.e., Moved), and the 

gray dots indicate the inventors who did not move their home locations (i.e., 

Non-Moved). Patent Count is the number patents granted to an inventor per year 

before firm relocations. Scaled Citation re-scales the total number of forward 

citations to patents received by an inventor per year before relocations, and 

Payment Count calculates the number of maintenance fee payments made by a 

firm per inventor–year before relocations. 
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hat validates the consistency of pre-firm-relocation performance trends

etween the moved and non-moved inventors. 30 We find no statistically

ignificant evidence for a difference in pre-firm-relocation performance

rends between these two groups of inventors. 

We step back to reflect on why we do not observe a difference in pre-

rm-relocation performance trends between the moved and non-moved

nventors. We believe a key plausible explanation is the existence of

alient costs for inventors to move homes. Although the intuition that

etter-performing inventors have a greater incentive to change their

ome locations to avoid longer commutes makes sense ex ante , home

oving costs may make that decision less clear for an individual inven-

or. Furthermore, it is also plausible that at least some better-performing

nventors may also have higher implicit moving costs because the op-
30 See Online Appendix A.6.1. r
ortunity cost of the time and effort needed for home moving would be

ore expensive for them. 

. Conclusion 

Commuting is costly for employees. In 2014, 139 million U.S. work-

rs made daily commutes to work, averaging 26 minutes each way

 Ingraham, 2016 ). 31 The total opportunity cost of commuting for work-

rs can exceed their hourly wages ( Van Ommeren and Fosgerau, 2009 ),

mounting to thousands of dollars per average worker per year

 Perino, 2019 ), and this is before taking into account potential costs

n workers’ subjective well-being ( Kahneman and Krueger, 2006 ). But

ow costly is commuting for inventors —an especially important type of

killed worker —in terms of lost productivity? 

We empirically investigate how commuting distance affects the pro-

uctivity of inventors. To test this, we use firm relocation as an ex-

genous variation of commuting distance and design a difference-in-

ifferences model based on the relocation event. This empirical strategy

dentifies the causal effect of commuting distance on productivity, sepa-

ated from confounding sorting effects by both firms and inventors. We

nd evidence that commuting negatively affects inventor productivity,

ith every 10 km increase in commuting distance leading to about a 5%

ecrease in patenting quantity and a 7% decrease in patenting quality.

he negative effects are stronger for top inventors whose productivity

s within the top 10% among all inventors. 

.1. Implications for managers and policymakers 

Our results provide important implications for managers and firms

n knowledge-intensive industries. Firms should encourage their inven-

ors to live closer to their workplaces and consider commuting distance

hen making office location decisions, with greater consideration for

heir highest-performing inventors. Some major technology firms al-

eady incentivize their employees to live closer to the workplace. In

015, Facebook offered employees working at its Silicon Valley head-

uarters over $10,000 to move closer to the office and avoid the lengthy

nd time-consuming commute from San Francisco to Menlo Park, CA

 Reuters, 2015 ). Other technology businesses, like Google, are building

roximate housing for their employees. 

For policymakers, our findings support the importance of density in

rban planning policy. Although it is ex ante clear that inventors them-

elves incur a time and monetary cost from commuting, we show that

ommuting imposes a further indirect cost on inventor productivity,

orne by both the inventor and her employer. Thus, increasing zon-

ng and other land-use restrictions on multifamily construction have an

nintended efficiency cost, as over the last few decades these policies in-

reased the average commuting time across the United States ( Gyourko

t al., 2008, 2019 ). 

.2. Telecommuting: COVID-19 and future of work 

The COVID-19 pandemic of 2020 caused a dramatic change in work

nvironments and forced firms and skilled workers into telecommut-

ng and remote work arrangements heavily reliant on videoconferencing

nd other virtual collaboration tools. Although some of this shift away

rom in-office work might be transitory, recent events suggest that the

hock of the pandemic may have a permanent shock on some or many

rganizations. For example, technology firm Twitter announced in May

020 that its workers can choose to permanently stay remote and not re-

urn to the physical office (e.g., Dwoskin, 2020 ). In light of these recent

rends in remote work, it is crucial to consider our findings on the effect

f physical commuting on innovation in the context of telecommuting.
31 Assumes fifty work weeks in a year, with five work days per week and a 

ound-trip commute each day. 
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A  
s the most direct implication of our finding that physical commuting

as a negative on the performance of inventors, telecommuting could

ttenuate that cost by substituting for physical commuting, suggesting

hat firms should seriously consider allowing for more telecommuting,

t least among more distant employees. 

Going beyond that immediate implication, an interpretation of our

ndings in the context of existing literature on telecommuting and re-

ote work suggests a greater degree of complexity in understanding

he relationships between physical commuting, telecommuting, and in-

ovation performance. While a full analysis would be beyond the scope

f the present study, we hope to provide some intuition here that can

uide future research on this essential matter. Consider two scenarios

or which telecommuting changes work environments: a hybrid work

nvironment where skilled employees commute to a physical office and

elecommute to work remotely, and a pure remote work environment

ithout any commutes to the office. In the hybrid work scenario, recent

ork by Choudhury (2020) and Choudhury et al. (2020) suggests that

rovisioning of telework —often framed as a “work-from-home ” or even

work-from-anywhere ” policy —could prompt workers to move further

rom the office than we would traditionally expect. Thus, the hybrid

nvironment could increase commuting distance, and our research im-

lies that this pattern may result in poorer innovation performance for

n-office work requiring physical commuting. However, our findings on

he effect of physical commuting do not provide insight towards the

nnovation that comes about during remote work. 

In the second scenario, a pure remote work environment assumes

o physical commuting at all. Although there is no existing literature

ooking directly at the relationship between telecommuting and innova-

ion, we can triangulate some key mechanisms on two dimensions. The

conomics and management literatures conceptualize innovation as a

ombination of general productivity (i.e., value, usefulness) and creativ-

ty (i.e., novelty) (e.g., Amabile, 1983; Bloom and Van Reenen, 2010;

hosh and Wu, 2020; Nelson and Winter, 1982 ). 

To decompose the effect of telecommuting on innovation, we need to

onsider its effects on general productivity and creativity, both of which

re necessary for innovation. Importantly, telecommuting may have op-

osing effects on these dimensions of performance underlying innova-

ion. On the one hand, telecommuting could improve general productiv-

ty through increased time availability and improved work efficiency per

nit of time ( Bloom et al., 2015; 2011 ). Although prior studies focus on

elatively less-skilled employees than inventors (e.g., call center employ-

es), telecommuting could plausibly have a positive effect on the general

roductivity of inventors. For instance, Bartik et al. (2020) find that

he COVID-19 pandemic facilitated a more rapid transition to remote

ork in skilled knowledge work relative to other types of work. On the

ther hand, telecommuting can negatively affect important antecedents

o creativity, limiting interpersonal communication and collaboration.

 recent study by Microsoft finds that work-from-home policies during

he COVID-19 pandemic reduced the time for collaboration ( Yang et al.,

020 ). In addition, early studies of virtual work find that it limits im-

rovisational and experimental teamwork ( Gibson and Gibbs, 2006 ) and

earning from others ( Cooper and Kurland, 2002 ). Taking these two op-

osing consequences of telecommuting at face value, it remains unclear

hat effect telecommuting would have on innovation performance. 

.3. Future research 

There are several avenues for future research. First, future studies

ould unpack the relationship between commuting distance, inventor

ages, and inventor productivity. Wages are an important channel in the

ndogenous relationship between commuting distance and productivity

 Brueckner, 2001 ), especially given that an efficiency wage can affect

roductivity ( Ross and Zenou, 2008 ). Our research could not leverage

etailed wage data for inventors due to the highly confidential nature

f the tax data sources. Given the lack of wage data, we interpret the

esults by conceptualizing the potential role of an efficiency wage, with-
ut directly investigating this channel empirically. It would be worth

nvestigating the wage dynamics of inventors in regard to changes in

ommuting distance to identify the potential role played by efficiency

ages versus the “pure ” effect of commuting on productivity. 

Second, the literature shows that amenities can affect productivity

f workers ( Rauch, 1993 ) and that workers choose their locations

artly based on local amenities ( Diamond, 2016 ). Given that inven-

ors are more likely to be knowledge-sensitive, and concentrating

igh-skilled inventors can strengthen spillover effects, studying the

ole of amenities in innovation performance would be an interesting

esearch question. For purposes of the present study, we control for

he potential amenity effects —with time-varying amenity fixed effects

n our robustness checks —rather than directly investigating how

menities affect inventors. With detailed data on local amenities, one

ould delve into how (changes in) amenities influence innovation

utcomes. 

Third, further work should explore the exact mechanisms underly-

ng our identified negative elasticity between commuting and inventor

roductivity. Although we offer suggestive evidence that commuting

isproportionately affects inventor productivity for the top inventors,

everal potential mechanisms could be at work. For example, inventors

ith a longer commute could spend less time at work, or they could be

ess productive at work, etc. More detailed time-use data at the inven-

or level would allow for future research to disentangle these factors.

n particular, clarifying the underlying mechanisms with detailed data

ould also separate out the effects of physical commuting on general pro-

uctivity and creativity; as previously alluded in Section 5.2 , this gran-

larity would also provide intuition for understanding telecommuting

 Kun et al., 2020 ). 

Finally, there needs to be more research to empirically identify

he effect of commuting distance on productivity for other types of

killed workers. Human capital underlies the technological innovation

hat is critical for the performance of firms in high-technology indus-

ries ( Clough et al., 2019; Hall et al., 2005 ). More importantly, closer

ommuting distance could be more critical for skilled workers because

t can free up time for in-person communication and collaboration

 Battiston et al., 2020 ) and thereby facilitate knowledge sharing and

pillovers between workers co-located at a workplace. Prior studies

ighlight this channel as a crucial factor in generating innovation ( Jaffe

t al., 1993; Catalini, 2017 ). Consequently, future work could expand

n generalizing our particular findings on the link between distance and

atenting to other knowledge-intensive industries. 
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