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1. Introduction

An extensive body of ongoing research highlights the importance
of understanding the spatial determinants of innovative productiv-
ity. Technology innovation is a vital source of economic growth
(Romer, 1990) and critical for the performance of firms in high-
technology industries (Hall et al., 2005). Recent work investigates the
importance of spatial location or proximity on innovation, highlight-
ing specific mechanisms like inter-inventor and inter-firm proximity
(Breschi and Lenzi, 2016; Carlino and Kerr, 2015; Kim and Wu, 2019),
housing markets (Bernstein et al., 2020), and regional policy design
(Moretti and Wilson, 2017; Glaeser and Hausman, 2019).

Although this existing work documents important mechanisms par-
ticularly at the firm or patent level of analysis, there remains a gap in
our understanding of how spatial considerations matter at the inventor
and inventor—firm level of analysis. In particular, we study how com-
muting distance between an inventor’s home and her workplace might
affect the production of innovation by the inventor, and consequently,

her firm. Relative to the existing studies of commuting in the litera-
tures on urban economics and geography, this study addresses two gaps.
First, we direct attention to understanding how commuting might affect
inventors, a unique and important class of worker. Previous work fo-
cuses on commuting distance of general workers (e.g., Mulalic et al.,
2014), and it remains unclear how commuting distance affects inven-
tors. Second, we investigate how commuting affects individual-level
productivity, an important outcome with little to no prior empirical
study. Although the literature on commuting addresses important out-
comes, such as wage compensation (Zax, 1991; Manning, 2003; Mulalic
et al., 2014), residential mobility (Zax and Kain, 1996), and life quality
(Kahneman and Krueger, 2006), a relatively limited set of work looks
directly at individual-level performance, although some studies address
absenteeism associated with long commutes (e.g., Van Ommeren and
Gutiérrez-i Puigarnau, 2011).

Thus, we address the question: How do longer workplace-home com-
mutes affect inventor productivity? Theoretically, it is unclear whether
there will be a significant relationship in aggregate. On the one hand, a
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longer commute may adversely affect inventor productivity if inventors
spend less time at work (Bloom et al., 2009), face a higher cost of pro-
viding effort (Shapiro and Stiglitz, 1984; Zenou, 2002; Ross and Zenou,
2008; Zenou, 2009), or engage in less in-person communication and
collaboration to share knowledge (Battiston et al., 2020; Catalini, 2017;
Jaffe et al., 1993). On the other hand, several mechanisms could also
improve inventor productivity and offset these negative effects: inven-
tors with longer commutes could receive higher efficiency wages (Ross
and Zenou, 2008; Zenou, 2009), face less stress (Ashforth et al., 2000),
and have more individual time to develop novel ideas (Furnham, 2000).
Therefore, we must turn to the data to assess whether commuting dis-
tance has a significant causal effect on inventor productivity.

We construct a novel inventor—firm—year panel dataset of U.S. inven-
tors that relates inventor productivity to precise measures of workplace—
home distance. To measure inventor-level productivity, we leverage the
rich information contained in patent records, which allow us to proxy
the scientific and economic value generated by the inventors (Pakes,
1986; Hall et al., 2001). Patents serve as a meaningful indicator of the
innovation and rents captured by both firms (Pakes, 1985; Kogan et al.,
2017) and the inventors they employ (Toivanen and Vadnédnen, 2012;
Kline et al., 2019). To measure commuting distance for each inventor,
we combine the patent data with comprehensive firm establishment lo-
cation data and inventor residential location data from housing transac-
tion records.

Our empirical design seeks to overcome the identification challenge
of residential sorting. Both inventors and firms make endogenous lo-
cation choices based on factors such as housing costs, amenities, and
of course commuting costs. To solve this endogeneity problem, we ex-
ploit firm relocations that exogenously shock commuting distance in a
stacked and generalized difference-in-differences design. We adopt this
methodology from Mulalic et al. (2014), where they use firm relocations
as a quasi-experimental setting to investigate the impact of commuting
distance on wage compensation. In our case, the identification strategy
focuses on firm relocations that change the workplace-home commuting
distance for inventors who retain the same home location and continue
to work for the same firm before and after the relocation.

We find a 5% decrease in inventor productivity measured in raw
annual patent counts for every 10 km increase in commuting distance.
For patent quality as measured by citations, the effect is even larger
with a 7% decrease in inventor productivity for every 10 km increase
in commuting distance. The productivity loss is larger for the highest-
performing inventors, those in the top 10% of all the inventors we study.
The results are robust to a variety of alternative empirical tests that in-
vestigate and rule out other factors that may affect our measurement of
the relationship between commuting distance and inventor productiv-
ity, i.e., firm relocations relative to pre-trends in inventor performance;
firm-level characteristics, time-varying amenities, composition of the in-
ventor sample, etc.

This study makes several contributions. First, we provide the first
direct causal estimate of the impact of commuting on individual-level
productivity in the literature, for a particular class of skilled workers: in-
ventors. We measure a key implication of the commuting costs assumed
in the monocentric city model (Alonso, 1964; Duranton and Puga, 2015;
Mills, 1967; Muth, 1969), which should interest urban and economic
geography scholars in general. The negative effect of longer commutes
on inventor productivity acts against positive agglomerative forces that
cause populous cities to be more productive, such as improved matching
within a larger labor pool (Helsley and Strange, 1990; Lagos, 2000), in-
creased specialization via division of labor (Baumgardner, 1988; Becker
and Murphy, 1992; Duranton, 1998), and more knowledge spillovers
(Jovanovic and Rob, 1989; Glaeser, 1999; Duranton and Puga, 2001).

Second, we contribute to recent literature studying the relationship
between the spatial organization of inventors and firm innovation per-
formance. Recent work continues to investigate the effect of spatial
proximity on innovation (Aggarwal et al., 2020; Breschi and Lenzi,
2016; Carlino and Kerr, 2015; Roche, 2020) and the role of policy in that
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relationship (Moretti and Wilson, 2017; Glaeser and Hausman, 2019).
We focus specifically on inventor—firm proximity, the dimension of prox-
imity unexplored in prior work.

Finally, we apply the findings of this study to derive implications
for future research on telecommuting and remote work. The research
for this study largely took place prior to the COVID-19 pandemic, and
telecommuting and remote work were not common in our study periods.
That said, our findings relating innovation to physical commuting can
provide insights towards an understanding of the relationship between
innovation performance and telecommuting—both as a partial and full
substitute for physical commuting. Nevertheless, significant open ques-
tions remain, particularly about how telecommuting relates to general
productivity and creativity, which are both necessary components of
innovation performance. We call for future research to tease out the
specific mechanisms through which telecommuting might affect the in-
novation generated by high-skilled workers.

The rest of the paper is structured as follows. First, we describe
the construction of the inventor-firm—year panel data sample central
to this paper. Second, we discuss the key endogeneity considerations
and present our empirical strategy leveraging workplace relocations for
causal identification. Third, we document the empirical findings. We
then conclude with a summary of our contributions and discuss oppor-
tunities for future work.

2. Data

Leveraging a novel combination of several data sources, we construct
a unique inventor—firm—year panel for U.S. firms and inventors between
1997 and 2012. The data contains precise locations of both the work-
place and home of inventors, allowing us to accurately construct vari-
ous measures of workplace-home commuting distance for each inven-
tor. Moreover, our setting of inventors lends itself directly to measuring
individual-level contributions to firm productivity, through measures of
patenting output that are linked to both the inventors and their employ-
ing firms. This data then allows us to exploit within-city relocations of
the firm offices, serving as exogenous shocks to the workplace-home
distance for each inventor.

2.1. Data construction

There are three different data types combined in this paper: patent
data, employee data, and firm data. The U.S. Patent and Trademark Of-
fice (USPTO) data captures the whole universe of inventors and their
firms in the U.S. Because the address information in the USPTO data
is insufficiently precise for our desired analysis, we merge the inven-
tors and firms from the USPTO data to DataQuick and InfoUSA data on
inventor residences and firm establishments, respectively.

2.1.1. Employee data: Dataquick

To identify the residential location of inventors in our sample, we
use detailed housing transactions data from DataQuick, a leading sup-
plier of real estate data and analytics, to obtain the street address of the
inventors.! The data covers 60 combined statistical areas (CSA) in 23
states from 1993 to 2012 and includes more than 195 million housing
transactions and refinances.? For each transaction, we observe both the
exact address of each home bought/sold, and the full name of the home
buyers and sellers.

! DataQuick was acquired by CoreLogic in 2014.

2 We use combined statistical areas (CSAs), instead of the metropolitan sta-
tistical areas (MSAs) that make up each CSA, because CSAs better reflect the
possible intra-region commuting flows and economic ties. See Ferreira and Gy-
ourko (2015) for additional information about the construction of the DataQuick
sample. Table 1 provides further information about the geographic coverage of
the sample.
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Table 1

Data Composition by CSA. The Final Sample consists of inventors used in our
main analyses, and All Inventors reflects the entire set of inventors in the USPTO
data. The numbers represent observation counts of inventors and firms by CSA,
and the percentages of inventors and firms in a CSA are shown in parentheses.
The six largest CSAs by population are shown, ordered by the count of inventors,
while the rest are grouped into Others.

Combined Statistical Area Final Sample All Inventors

Inventors Firms

Inventors

San Jose-San Francisco-Oakland 1168 341 146,631
(CA) (34%) (29%) (26%)
Boston-Worcester-Providence 515 180 67,922
(MA-RI-NH-CT) (15%) (15%) (12%)
Los Angeles-Long Beach 363 126 60,503
(CA) (11%) (11%) (11%)
Chicago-Naperville 205 72 46,188
(IL-IN-WI) (6%) (6%) (8%)
New York-Newark 160 92 84,529
(NY-NJ-CT-PA) (5%) (8%) (15%)
Washington-Baltimore-Arlington 133 65 33,091
(DC-MD-VA-WV-PA) (4%) (6%) (6%)
Others 901 304 124,117

(26%) (26%) (22%)
Total 3445 1180 562,981

(100%) (100%) (100%)

2.1.2. Firm data: InfoUSA

To identify the workplace location of inventors in our sample, we
use historical firm establishment location data from InfoUSA contain-
ing the street addresses of offices of all firms in the US between 1997
and 2012. InfoUSA aggregates firm location data from various public
sources, including yellow pages, credit card billing data, company an-
nual reports, etc. InfoUSA also verifies information via phone calls and
web research every year (DiNardo and Lee, 2004). The data provides in-
formation about firm name, street address, NAICS code, employee count,
and sales volume. To verify the accuracy of InfoUSA data, we compare it
to the County Business Patterns (CBP) data by state, and we find the to-
tals to be quite similar.? The InfoUSA data covers more than 15 million
verified firm establishments in U.S.

2.1.3. Matching across data

To construct a panel of matched inventor—firm pairs, we start with
the inventor and firm information in the USPTO data between 1975
and 2012.% i et al. (2014) provide a disambiguated patent database
identifying unique inventors across patents and distinguishing inventors
with identical or similar names. Each patent contains the names of the
inventors, the firm (i.e., assignee) that owns the patent and most likely
employs the inventor(s), and the home city and state of each inventor
in the U.S. To complement the limited inventor location information in
the USPTO data, we first match the USPTO inventor names and locations
(city and state) with the DataQuick housing transaction data that reveals
exact home addresses. We then match firm names and locations against
the InfoUSA data to obtain precise firm establishment addresses. The
matching process is described in detail in the paragraphs below.

To obtain inventor home addresses, we first match home buyer
names exactly against inventor names from the same city. We then
match inventor names to seller names in the subsequent transaction
to obtain ownership years for each home buyer. To restrict our sam-
ple to owner-occupiers, we exclude cases where people with the same
names own different addresses in the same city because we cannot iden-
tify their main residence or whether they are different people with the
same name. In other words, we identify homeowners with unique names

3 See Online Appendix A.1.2.

4 We focus on utility patents, which account for more than 90% of all patents
granted by the USPTO. The raw patent data covers 828,217 ultimately granted
patents that were filed by 562,981 inventors living in the 60 CSAs.
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within a city.® Overall, we match around 264,000 inventors, or 47% of
all inventors, to their exact home addresses. To assess the validity of this
matching process, we conduct a balance test comparing the matched in-
ventors with unmatched inventors in terms of their innovation perfor-
mance: we find no statistically significant difference across these two
groups.®

We then manually match USPTO firm names against firm establish-
ment names in the firm location data to obtain inventor workplace ad-
dresses. We obtain precise office locations for 36,468 firms that applied
for patents between 1997 to 2012 with inventors for whom we could
identify their precise home address. To identify an inventor’s precise
work location if her employer has multiple establishments within the
CSA, we select the most likely location based on whether it has by far
the largest number of employees and whether it has a “research labora-
tory” designation in the corresponding NAICS codes.” We drop observa-
tions where it was impossible to uniquely identify a main office location
within the CSA. This process results in 35,836 single-location firms.

As we describe later in our empirical strategy section, we use firm re-
locations as exogenous shocks to commuting distances. In service of this
empirical strategy, we identify within-CSA business relocations where
the main firm establishment location within the CSA changes from one
year to the next. To improve the power of our estimates, we limit our
sample to firms making substantial moves of more than one kilometer.
We then identify inventors who worked (i.e., patented) for the relocating
firm both before and after its relocation. Finally, we eliminate reloca-
tions that occurred in 1997 or after 2010, so we have data both before
and after the relocation. We also exclude outliers that account for 3%
of our total number of observations.®

Our study focuses on the inventors who changed neither their home
locations nor their employers during the sample period. This restric-
tion is required because of our identification strategy: we study only
commuting distance changes from firm relocation, not from inventors
moving homes or changing jobs. Among all the inventors who work
at relocating firms, 50% of them change neither their home nor their
job, and we focus on these inventors in our sample. There are other
types of inventors, too: 46% of them move their residence; 11% of them
change their job; and 7% of them change both their residence and their
job. Our final sample consists of 22,917 inventor-firm—year observa-
tions and 3445 inventor—firm pairs, representing 3417 unique inventors
employed at 1068 relocating firms.

2.2. Variables

2.2.1. Dependent variables: Inventor productivity

We construct several patent quantity and quality measures to cap-
ture inventor productivity based on the following rules. We attribute
each patent as the output of the assigned firm and the listed inventor(s)
based on its application year, which is the year when the invention was
initially filed at the USPTO. We use patent application year rather than
grant year because we are interested in when an inventor generates the
invention, not when it is first recognized.” We only consider granted

5 Although homeowner names are unique within our cleaned dataset, there
could be multiple same-name individuals living in the same city who are not
in our dataset. This measurement error potentially attenuates our estimates to-
wards zero. As a robustness check, we estimate an alternative specification by
weighting each inventor—firm pair inversely proportional to the probability of
another person having the same name in the same city. The results are consistent
with our main results. See Online Appendix A.2.

6 See Online Appendix A.1.4.

7 We only retain establishments that have five times more employees than all
other establishments of the same firm in the CSA combined.

8 See Online Appendix A.1.3.

9 Given the time lag between patent application filings and USPTO decisions
on whether to grant patents, the patent database is necessarily incomplete in
the years leading up to 2012 since some patent applications had not yet been
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patents, to ensure that the inventions satisfy a minimum quality thresh-
old as determined by the USPTO.!? Qur patent quantity measure, Patent
Count, is the number of annual granted patents to the focal inventor—
firm, applied for in the focal year.

Nevertheless, granted patents do differ in importance and quality
(Hall et al., 2005). To account for quality, we adopt standard mea-
sures used in the innovation literature (Hall et al., 2001; Bessen, 2008).
Scaled Citation re-scales the total number of forward citations to patents
by considering year and category fixed effects to control for mechan-
ical differences in propensity to cite.!! Citations proxy for a patent’s
scientific quality: the cited patent both conceptually forms part of ex-
isting knowledge that the citing patent builds upon and legally consti-
tutes prior art that limits the applicability of claims in the citing patent.
Trajtenberg (1990) provides empirical evidence that the number of ci-
tations represents value and novelty of innovation. Two other measures
of patent scientific quality are Generality and Originality scores, intro-
duced by Trajtenberg et al. (1997). Generality scores measure whether a
patent is cited by subsequent patents from a wide range of technologi-
cal categories, whereas Originality scores measure whether a patent cites
many prior patents from different technological categories. These two
measures represent innovation diversity. Generality represents whether
a patent has a potential to be applied in various innovations. Originality
indicates whether a patent uses a diverse mix of pre-existing innovations
to achieve a unique invention.'?

Beyond citation-based quality measures, we leverage patent mainte-
nance fee data from 1980 to 2019 to build another measure of patent
quality regarding market value, called Payment Count. We build on prior
work by Pakes (1986) and Bessen (2008) that leverage this data. The
USPTO website states that “maintenance fees are required to keep in
force all utility and reissue utility patents based on applications filed
on or after December 12, 1980.” In short, to keep patents in force and
valuable to the patent owner, patent owners pay maintenance fees 3.5,
7.5, and 11.5 years after the date of patent grant. Because the fee more
than doubles for each subsequent renewal, we consecutively assume that
the economic value of a patent is monotonically and positively related
to the number of maintenance fee payments made. Hence, we use the
number of maintenance fee payments, Payment Count, made by a firm to
renew a patent as a measure of the patent’s economic value. To avoid the
truncation problems associated with newly granted patents, we adjust
the raw number of payments by considering the conditional probability
matrix.'3

2.2.2. Main independent variable: Workplace-home distance
Using the panel of matched inventor-firm pairs, we measure com-
muting distance between an inventor’s workplace and home, with our

granted. Assuming that the USPTO’s idiosyncratic time lag is consistent within-
industry, this sampling consideration should impact inventors working in the
same business establishment equally and not bias our estimation results.

10 In an investigation of patent applications filed between 1996 and 2005,
Carley et al. (2015) find that around 55% of all patent applications are eventu-
ally granted, suggesting that granted patents do satisfy some minimum quality
threshold.

11 Trajtenberg et al. (1997) document this adjustment process as a way to “re-
scale” citations, and this motivates the variable name, Scaled Citation. This vari-
able is also used by Bernstein (2015). The citation information is originally at
the patent level. Because our final data is at the inventor-firm-year level, we av-
erage Scaled Citation by each inventor-firm pair at a given year. This conversion
method applies to all the other quality measures.

12 Mathematically, Generdlity for patent i is:

n;
Generality, =1 — 9/2/ D
J
where s;; is the share of citations received by patent i that belong to patent
category j, out of n; patent categories. Originality is defined similarly, except
that it uses citations made by patent i to patent categories j.
13 Online Appendix A.4 details the construction of the Payment Count variable.
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Table 2

Pre- and Post-Relocation Summary Statistics. Summary statistics at the
inventor—firm level. The results are based on 3445 unique inventor—firm pairs
used in our main analyses and compare their average values before firm reloca-
tions (i.e., Pre-Relocation) and after relocations (i.e., Post-Relocation). Distance
is in kilometers.

Mean Std. Dev. Min Median Max

Pre-Relocation

Patent Count 0.858 0.879 0.000 0.600 8.333
Scaled Citation 1.365 2.561 0.000 0.491 30.892
Generality 0.399 0.495 0.000 0.250 4.340
Originality 0.206 0.331 0.000 0.087 4.775
Payment Count 1.816 2.085 0.000 1.312 15.333
Distance 21.456 16.166 0.000 17.184 98.813
Post-Relocation

Patent Count 0.328 0.654 0.000 0.000 9.000
Scaled Citation 0.633 2.463 0.000 0.000 81.801
Generality 0.128 0.334 0.000 0.000 6.362
Originality 0.079 0.212 0.000 0.000 3.802
Payment Count 0.589 1.300 0.000 0.000 23.611
Distance 21.607 15.919 0.001 17.463 99.908

primary independent variable Distance reflecting the geodesic distance:
the shortest path between two points on the curved surface of the Earth
between inventor’s workplace and home.!* We use geodesic distance
as our main measure of commuting distance because it is parsimonious
and fixed over time.!®

2.3. Descriptive analysis

2.3.1. Geographic distribution

Fig. 1 shows the distribution of workplace-home Distance. The distri-
bution skews towards shorter commutes, and its mode is around 10 km
with substantially fewer observations at greater distances. The major-
ity of inventors in our sample have a commuting distance of less than
18km. This distribution is consistent with studies by the U.S. Depart-
ment of Transportation (e.g., U.S. Government Bureau of Transporta-
tion Statistics, 2003), suggesting that the matching process generated
sensible workplaces-home matches for the inventors.

Table 1 shows the distribution of our observations between CSAs,
focusing on the six largest CSAs by total population. Roughly a third of
all inventor—firm pairs in our sample are from the San Jose-San Fran-
cisco Bay (CA) area, representing Silicon Valley and the presumed heart
of the U.S. technology industry. The proportion of Silicon Valley in our
sample is similar to its portion in the universe of inventors filing with
the USPTO, suggesting that the geographic distribution of our matched
inventors is comparable to the distribution of all U.S. inventors.

2.3.2. Summary statistics: Pre- and post-relocation

Table 2 shows summary statistics for our final sample at the
inventor—firm pair level, taking the pre- and post-relocation averages. In
both periods, the mean values of productivity measures are well above
their median values. This finding suggests that patent outcomes in our
sample are skewed with a long tail of very productive inventors, consis-
tent with prior literature (e.g., Akcigit et al., 2016).

14 We use Vincenty (1975) equations for a mathematical model of the Earth.

15 We also create two other commuting distance measures based on the as-
sumption that the inventor might be driving or taking public transit to work.
Drive Distance is the shortest route for a motor vehicle, i.e., via roads that are
legal to drive on, between the inventor’s home and workplace. Drive Duration
is the estimated fastest time it takes to drive or take public transit between the
inventor’s home and workplace, accounting for speed limits and historical traf-
fic conditions. Along with the main measure Distance, these three commuting
distance measures are highly correlated (i.e., correlations are greater than 0.9),
and the regression estimates based on Drive Distance and Drive Duration are con-
sistent with the main results based on Distance. See Online Appendix A.7.6.
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Fig. 1. Distribution of Workplace-Home Distance. Frequency distribution at the inventor—firm level. The variable Distance represents geodesic distance in kilo-

meters (km) between workplace and home prior to firm relocations.

We also find that all the inventor productivity measures decline af-
ter firm relocation. While some of this decline in productivity post-
relocation is due to truncation bias stemming from the application-grant
time lag of patents, some might be genuine and related to the reloca-
tion itself. On the other hand, the mean commuting distance remains
roughly constant after relocation, and this shows that the relocation-
driven positive and negative distance shocks are generally comparable.
Hence, we find a discrepancy that the overall productivity measures
decline even though the overall distance remains unchanged. This dis-
crepancy implies that the negative distance shock has a stronger impact
on productivity than the positive shock does.!®

2.3.3. Balance test

Table 3 reports the balance test results for inventor—firm-year obser-
vations prior to a workplace relocation event, divided by the direction of
the commuting distance shock. Columns (4-6) show the results of two-
sample t-tests for equality of means between these three groups. Prior
to the workplace relocation, inventors in the closer and farther groups
have statistically indistinguishable productivity in most cases. Unsur-
prisingly, these two groups differ significantly in terms of workplace—
home Distance: inventors who live closer to the workplace are me-
chanically more likely to experience an increase in their workplace—
home Distance than for inventors who previously lived farther away.
Table 3 shows that Inventor Pre-Relocation Income is somewhat higher
for the farther group than for the closer group.'”

The systematic differences in Inventor Pre-Relocation Income need to
be addressed. After further investigation, we find that these differences

16 Online Appendix A.7.2 further investigates this heterogeneity.

17 We obtain limited income information by matching housing transactions
against loan application data in the Home Mortgage Disclosure Act files, as de-
scribed in Ferreira and Gyourko (2015). Our income data consists of gross wage
and some additional non-labor income, such as interests and dividends. We only
observe pre-relocation income data: inventor income is revealed when an inven-
tor makes a housing transaction, but we study the inventors who do not change
their home. Those inventors, by definition, make housing transactions only be-
fore relocation.

can be explained by two facts acting together. First, the average estab-
lishment tends to be moving away from city center, with the average
move being 2.55 km away. Second, higher-income and more-productive
inventors preferentially live in suburb areas: Fig. 2 plots average Patent
Count and Inventor Pre-Relocation Income against distance from home to
the central city. Therefore, inventors whose firm on average moves to-
wards their home are more likely to live in the suburbs, and they tend
to have higher Inventor Pre-Relocation Income than inventors whose firm
on average moves away from their home. Our identification strategy al-
leviates this concern by including inventor—firm fixed effects to absorb
time-invariant differences between inventors.

2.3.4. Non-parametric estimation

Fig. 3 presents a non-parametric estimation of our main research
question, relating workplace-home Distance with Patent Count with-
out controlling for anything. Using the full sample of 3445 matched
inventor—firm pairs, Fig. 3 shows a clear negative correlation between
distance and productivity. The patenting rate declines approximately
linearly and steadily with increasing workplace-home distance.

This negative correlation does not yet imply any causal relationship
since endogenous sorting of inventors and firms potentially confounds
the basic observed relationship. The next section details the empirical
strategy for causal identification in light of these possible confounding
effects.

3. Empirical design

We first motivate the need for our identification strategy by dis-
cussing the main issue of endogenous sorting. We then describe our
methods and assumptions, particularly with respect to the labor mar-
ket.

3.1. Endogeneity: Residential sorting

For estimating the causal effect of commuting distance on inven-
tor productivity, the main challenge is that the location choices of
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Table 3
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Balance Test by Direction of Distance Shocks. Summary statistics at the inventor-firm level. Pre-relocation means are
provided with standard errors in parentheses and number of inventor—firm pairs in brackets. Closer/Same/Farther columns
indicate subsamples for which commuting distance decreased by more than 1 km, stayed the same (i.e., changed by less
than 1 km), and increased by more than 1 km, respectively. Distance is in kilometers, and Inventor Pre-Relocation Income is

in 1,000 U.S. dollars.

@ 2) 3) p-value
Closer Same Farther (1) vs. (3) (1) vs. (2) (2) vs. (3)
Patent Count 0.850 0.846 0.869 0.547 0.928 0.591
(0.024) (0.036) (0.023)
[1348] [528] [1569]
Scaled Citation 1.380 1.272 1.383 0.970 0.415 0.372
(0.073) (0.098) (0.064)
[1348] [529] [1569]
Generality 0.391 0.415 0.401 0.598 0.333 0.563
(0.013) (0.022) (0.013)
[1348] [529] [1569]
Originality 0.193 0.195 0.220 0.028 0.899 0.141
(0.008) (0.013) (0.009)
[1348] [529] [1569]
Payment Count 1.808 1.817 1.823 0.854 0.937 0.956
(0.057) (0.089) (0.052)
[1348] [529] [1569]
Distance 26.47 19.38 17.85 0.000 0.000 0.041
(0.046) (0.067) (0.037)
[1348] [529] [1569]
Inventor Pre-Relocation Income 131.881 130.837 118.807 0.035 0.918 0.026
(6.011) (5.281) (2.569)
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Fig. 2. Residential Sorting by Distance to City Center. Binned scatter plots at the inventor level. The horizontal axes denote an inventor’s home-central city
distance (in km), which is fixed over time because the main sample consists of the inventors who did not move their home locations. The vertical axis in the left
graph denotes the average number of patents granted to an inventor (i.e., Average Patent Count) and in the right graph measures an inventor’s income before firm
relocations (i.e., Inventor Pre-Relocation Income). Bins are formed for each nearest 5 km.

both inventors and firms are endogenously determined. Inventors en-
dogenously choose their place of residence based on a long list of fac-
tors in addition to commuting costs (Deitz, 1998), including amenities
(Diamond, 2016) and price of homes (Dubin and Sung, 1987). Factors
that firms consider in their office location decision include office rent
and nearby productive amenities, in addition to geographic accessibil-
ity. Therefore, a simple regression of inventor productivity on commut-
ing distance would be biased due to sorting.

We first consider the endogenous location decision of inventors mo-
tivated by the classic monocentric city model. The classic model con-
sists of rich and poor households, and their income difference makes the
rich demand more/larger housing than the poor under the same housing

price. This mechanism results in residential sorting where the rich live in
the suburbs, and the poor are in the city center (e.g., Brueckner, 2001).18

18 While this model implies a positive correlation between income and distance
to the city center, i.e., the assumed commuting distance, Gutiérrez-i Puigar-
nau et al. (2016) find a negative causal relationship between income on com-
muting distance in a study of workers in Denmark, despite an observed posi-
tive correlation between income and commuting distance documented in other
empirical studies. Nevertheless, there are important contextual differences be-
tween the United States, the context for our study, and European countries
(Brueckner et al., 1999), which could result in a different pattern for the corre-
lational and causal relationships between income and commuting distance.
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Fig. 3. Descriptive Relationship Between
Workplace-Home Distance and Patent
Count. Binned scatter plots at the inventor—
year level. Both horizontal and vertical axes
represent values prior to firm relocations. Bins
are formed for each nearest 1 km.
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Our model mirrors the standard monocentric model by distinguishing
inventors by skill (i.e., high- and low-skilled) and using the income dif-
ference between high- and low-skilled inventors. In addition, knowledge
workers tend to reside in the suburbs due to their stronger preferences
for schools and children’s education (Frenkel et al., 2013), whereas
young college graduates who are relatively less-skilled prefer living
close to the city center because of better labor market opportunities
(Van Vuuren, 2018) facilitated by a labor market network based on res-
idential proximity (Hellerstein et al., 2011). Thus, we assume a certain
case of inventor sorting where high-skilled inventors reside in outlying
suburbs, and low-skilled inventors live close to the center.!®

We now demonstrate how the inventor sorting brings about a biased
term in the estimation to measure the impact of commuting distance
on productivity. Consider an inventor i working for firm j, living at a
distance d;; from the firm. Assume perfectly competitive labor markets
where inventors are paid their marginal productivity of labor. For inven-
tors heterogeneous in their productivity type 6;, inventor productivity
I;; is determined by the following equation:

Ly =6, +Pidy +6; )

where ¢;; is an inventor—firm commuting distance-invariant productiv-
ity parameter that denotes the quality of the inventor—firm match, g; is
a measure of how distance affects individual-specific productivity, and
d; is a firm-specific distance-invariant productivity parameter. This for-
mulation allows for time-invariant heterogeneous distance effects across
both inventors and firms, i.e., the two parameters differ by each inventor
and each firm. We model inventor sorting by skill level and home-to-city
center distance. For each city m, let x,,; be distance between inventor i’s
home and the center of m. Then, inventor—firm specific productivity pa-
rameters are drawn from the real interval such that the distribution of

19 On the other hand, high-skilled inventors may choose to live closer to the
center because they have higher time costs of commuting, which would induce
a bias in the opposite direction. Regardless of the direction, our identification
strategy eliminates the confounding effects in inventor sorting. In addition, On-
line Appendix A.3 modifies this inventor sorting model by focusing only on skill
differences between inventors without economic considerations such as income
and amenities.

50 60

individual types is determined by:

0,

= g+ ayx,,; +€; 3)
where «; > 0 due to inventor sorting, i.e., more productive inventors live
farther from the city center, « is a constant, ¢;; is a commuting distance-
invariant match quality term, and E(x,,e;;) = 0. Thus, there is sorting in
city m of inventor types according to distance from the city center. If the
firm is located at the center of the city, then x,,; = d,;. Assume that firms
tend to be located closer to the city centers than homes, with a positive
correlation between x,,; and d;; on average. In this case, inventor i’s
distance to the city center correlates with distance to the firm, with x,,; =
v:id;; + u;j, where y; > 0. Plugging this expression into Eq. 3 combined
with Eq. 2, we have:

l,-j:a0+(ﬂ[+a1y,-)d,~j+5j+a1;4,~j+eij. “4)

Thus, the OLS estimate of g; using Eq. 2 would be biased if a; > 0 due to
inventor sorting and if y; > 0 due to firms concentrating in a city center
away from inventor residential locations.

3.2. Identification strategy

We address potential endogeneity by using firm relocations as ex-
ogenous shocks to commuting distance.?® Fig. 4 shows the distribution
of distance changes due to firm relocations: we observe large variation
in the distance changes with a number of inventors who experience a
distance shock of more than 10 km.

The crucial assumption for this identification strategy is imperfect
inventor resorting after firm relocations, due to factors like home mov-
ing costs and heterogenous match quality between inventors and firms.
In other words, some inventors prefer to stay at their home and with
their employer even after a distance shock because their moving and
job searching costs are greater than the benefits from resorting to an

20 Neumark et al. (2006) note that state or local policies are rarely aimed di-
rectly at attracting relocating businesses but do exist on a case-by-case basis.
Nevertheless, the design of our main data sample tends to exclude any of these
situations.
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Fig. 4. Distribution of Workplace-Home Distance Changes. Frequency distribution at the inventor—firm level. The horizontal axis indicates the difference before
and after firm relocations in geodesic distance between workplace and home (in km).

alternative home or employer.?! For example, Teradyne Inc., a major
high-tech producer of electronic component test equipment, moved its
headquarters from Boston, MA to North Reading, MA in 2006. There
are 10 inventors we identify as working with the company both before
and after the relocation, and they did not move their residential loca-
tion. Thus, they experienced changes in commuting distance solely due
to the relocation. This within—inventor—firm but across-time variation in
workplace-home distance lies at the core of our identification strategy.
The measured average effect in this sample may be a lower bound for
the population-level effect because an inventor who moves her home
location or changes her job is more likely to be sensitive to change in
commuting distance than an inventor who changes neither her home
nor job. Section 4.3 further documents this effect.

With this particular sample, we estimate a difference-in-differences-
style regression model to investigate how changes in commuting dis-
tance affect inventor productivity. Inventor—-firm pair fixed effects and
year fixed effects are included so that firm relocations are the only
source of commuting distance change in the within-inventor—firm anal-
ysis. The precise specification for inventor i, firm j, and year ¢ is as
follows:

Yije=Pdiji +a;; v+ 6 + € 5

where Y}, is the dependent variable for inventor productivity regarding
patenting for individual i working for firm j in year 1. d,;, is the dis-
tance between inventor i’s home and firm j’s office in year t. a;; is an
inventor—firm fixed effect that controls for the inherent productivity dif-
ferences between individuals, taking into account the matching quality
between inventor and firm. y, absorbs year fixed effects. §;, controls for
firm location fixed effects before and after relocation at the ZIP code
level. The firm location fixed effects account for potential differences
in time-invariant productive amenities near the office before and after
relocations; for example, a different set of nearby firms may provide
different knowledge spillovers. ¢;;, is the error term. We cluster robust
standard errors at the inventor—firm pair level.

21 Aggregate job stability in the United States has remained relatively consis-
tent over time (Diebold et al., 1997; Neumark et al., 1999).

The identification strategy assumes that there are no other events
that occur simultaneously with firm relocations.?”> Correlated events
may differently affect the productivity of inventors whose commuting
distance increases versus those whose commuting distance decreases.
However, the balance test results in Table 3 in Section 2.3.3 show that
inventors who received a positive distance shock are not significantly
different from inventors who received a negative distance shock in terms
of patent productivity. Section 4.2.2 provides additional tests that ac-
count for time-varying firm characteristics.

3.3. Imperfect labor market

The interpretation of our estimated coefficients differs depending
on labor market assumptions. In our base econometric model, we as-
sume perfectly competitive labor markets where inventors are paid their
marginal productivity of labor. In this case, if inventor wage does not de-
pend on commuting distance beyond the direct impact that commuting
has on productivity, we estimate the “pure” causal effect of commuting
on inventor productivity.

However, in imperfect urban labor markets, firms have market
power and pay inventors a wage below their marginal productivity.
They may also compensate inventors for longer commutes by paying
a higher wage. This wage compensation for longer commutes would in-
centivize these inventors facing longer commutes to stay at the firm and
provide more effort (Zax, 1991). Mulalic et al. (2014) empirically find
evidence of commuting-based wage compensation in Denmark.

If we assume that firms adjust wage compensation for inventor com-
mutes to provide an efficiency wage and incentivize effort (Ross and
Zenou, 2008), then our results can be interpreted as a total effect: our
estimates combine the “pure” causal effect of commuting on productiv-
ity and the countering effect of a higher efficiency wage. Even for in-
ventors who remain at the same home and the same job, our estimates

22 Although we assume that there is no simultaneous event confounding the
identification strategy, a firm could make a relocation decision partly based on
the past performance of its inventors. Online Appendix A.5 investigates whether
firms relocate endogenously towards better-performing inventors. We do not
find any evidence that firms relocate in this way.
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Table 4

Effect of Commuting on Inventor Productivity—Quantity. Fixed-effects OLS
regressions at the inventor—firm-year level. Dependent variable Patent Count is
the count of granted patents for an inventor—firm per year. Independent variable
Distance is geodesic distance between workplace and home (in 10 km). Robust
standard errors clustered at the inventor—firm level are shown in parentheses.
*p < 0.10, ** p < 0.05, *** p < 0.01.

D.V.: Patent Count [€))] 2 3) “
Distance -0.013* -0.039%* -0.030%* -0.041%*
(0.007) (0.016) (0.014) (0.019)
Inventor-Firm FE No Yes Yes Yes
Year FE No No Yes Yes
Firm Location FE No No No Yes
R? 0.000 0.335 0.386 0.415
Inventor-Firm Count 3445 3445 3445 3445

Observations 22,917 22,917 22,917 22,917

represent a lower bound for the “pure” effect of commuting on inventor
productivity, when taking into account this type of wage compensation.

We consider wage compensation in an imperfect labor market and
investigate how this consideration changes our empirical model. In an
imperfect urban labor market, firms have monopsony power over wages
due to the limited number of jobs available in a certain geographic area
(e.g., Manning, 2003). Assume that firms pay inventors an efficiency
wage with longer commuting distance to discourage them from shirk-
ing (Ross and Zenou, 2008). We define a simplified wage equation as
follows:

w;; = w:j + ew;;d;;

where w7’ is the market-clearing wage and ew;; is the per-unit commut-
ing distance efficiency wage that firm j pays to inventor i. Because only
the excess wage beyond the market-clearing level can affect productiv-
ity by preventing inventors from shirking, inventor productivity then

becomes:

lij = 0;; + (B; + ew;;)d;;.

Then, Eq. 4 in Section 3.1 becomes:

I,-j =ay+(f; + ew;; +a]y,-)d,-j + 5/- +ayp; + €

In this case of imperfect labor markets, the existence of non-zero job
search cost acts in conjunction with the existence of infra-marginal in-
ventors due to heterogeneity in inventor-firm match quality ¢;; to keep
some inventors from moving to a different job after firm relocation. Just
as before, positive moving costs keep some inventors from moving to
a different residential location. Looking at this subsample of inventors
who do not re-sort, we subtract their productivity before and after the
move to get:

Al = (f; + ew;)Ad,;.

Given that ew;; should always be the opposite sign of f;, this implies that
our estimates represent a lower bound for the weighted “pure” effect of
commuting distance on inventor productivity.

4. Results

We first present the main results on outcomes of patent quantity
and quality. We then explore heterogeneous effects for the highest-
performing inventors. Finally, we show that the main results are robust
to alternative specifications.

4.1. Main results

4.1.1. Patenting quantity

Table 4 shows estimated coefficients for our main difference-in-
differences specifications. Column (1) shows that Distance is negatively
correlated with Patent Count, as expected given the negative slope in
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Fig. 3. The size of the coefficient, however, triples after controlling for
inventor—firm fixed effects in Column (2) and becomes more statisti-
cally significant. The difference between Columns (1) and (2) suggests
that more-skilled inventors endogenously choose residential locations
farther away from their workplace than less-skilled inventors, which bi-
ases the OLS coefficient in Column (1) downward.??

The result remains highly significant when we control for year fixed
effects in Column (3) and firm location fixed effects in Column (4), sug-
gesting that endogenous location choice by firms in pursuit of higher
time-invariant productive amenities is not driving our results. Column
(4) represents our preferred specification, with every 10 km increase in
Distance causing an average decrease in inventor productivity of 0.041
patents per year. In percentage terms, this represents a 5% decrease
in inventor productivity per 10 km, compared with the average 0.86
patents per year per inventor—firm pair before the move.

4.1.2. Patenting quality

Turning to measures of patent quality, we find the same negative
effect of commuting distance on inventor productivity. Column (1) in
Table 5 shows that a 10 km increase in commuting distance causes
a 0.094 decrease in Scaled Citations, roughly 7% of the pre-relocation
mean. This suggests that the decrease in Patent Count is not driven by
inventors applying for fewer patents but by applying for more-impactful
patents. The results for Generality and Originality in Columns (2) and
(3) are consistent with this interpretation: the overall scientific quality
measures fall with increasing commuting distance, in step with Patent
Count. Testing for patent economic value proxied by the maintenance
fee payments, Payment Count, shows a potential decrease. Although the
coefficient is not statistically significant, it is likely due to the lack of
power in this specification; the last maintenance fee payment is only
required 11.5 years after the patent grant date, resulting in severe data
truncation.

4.1.3. Inventor heterogeneity

We explore suggestive evidence for potential underlying mechanisms
driving our results by investigating heterogeneous effects of commuting
distance on inventor productivity. Given that highest-performing inven-
tors may have a disproportionate impact on a firm’s innovation output
(e.g., Akcigit et al., 2016), we test whether the commuting distance ef-
fect is driven by these outstanding inventors. Top Inventor takes a value
of 1 for inventors whose cumulative number of granted patents rank in
the top 10% of our sample, and 0 otherwise. We include the interaction
term, Distance x Top Inventors, to estimate the heterogeneous effect.

Table 6 shows that the negative effect of distance on inventor produc-
tivity is largely driven by the highest-performing inventors. Column (1)
shows that Patent Count of the highest-performing inventors decreases
by 0.159 more patents per year per 10 km than the other 90% of less-
productive inventors, whose coefficient is reduced to a statistically in-
significant 0.026 patents per year per 10 km. This large discrepancy is
replicated with the two main patent quality measures, Scaled Citation
and Payment Count, in Columns (2) and (3) respectively.2*

To further investigate the heterogeneous effects, we consider a dif-
ference in mean productivity between Top Inventors and average inven-
tors. Because mean productivity is higher for Top Inventors, their oppor-
tunity cost for every work hour lost to their commute would also be
higher. However, even after taking their higher mean into account, Top
Inventors still suffer more proportionally than the average inventor: a

23 We confirm this by plotting pre-relocation inventor income and home price
against commuting distance. We find a strong positive correlation between the
two.

24 Hereafter, we use Patent Count, Scaled Citation, and Payment Count as the
three main innovation measures. Patent Count intends to measure the quantity
of innovation, whereas Scaled Citation intends to captures innovation quality
through the intellectual influence of patents on future inventions. Payment Count
serves as a proxy for the economic value of patented innovations.
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Table 5
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Effect of Commuting on Inventor Productivity—Quality. Fixed-effects OLS regressions at the inventor—firm-year level.
Scaled Citation re-scales the total number of forward citations to patents per inventor—firm pair per year by considering year
and category fixed effects. Generality scores measure whether a patent is cited by subsequent patents from a wide range of
technological categories per inventor—firm pair per year. Originality scores measure whether a patent cites many prior patents
from different technological categories per inventor—firm pair per year. Payment Count calculates the number of maintenance
fee payments made by a firm per inventor-firm pair per year. Independent variable Distance is geodesic distance between
workplace and home measured in 10 km. Robust standard errors clustered at the inventor—firm level are shown in parentheses.

*p < 0.10, ** p < 0.05, *** p < 0.01.

(€8] 2) 3) 4)
D.V.: Scaled Citation Generality Originality Payment Count
Distance -0.094* -0.025** -0.013** -0.047

(0.049) (0.011) (0.006) (0.042)
Mean of D.V. (Pre-Relocation) 1.365 0.399 0.206 1.684
Inventor-Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Firm Location FE Yes Yes Yes Yes
R? 0.381 0.387 0.392 0.417
Inventor-Firm Count 3445 3445 3445 3445
Observations 22,863 22,863 22,863 22,863

Table 6

Effect of Commuting on Inventor Productivity—Top Inventor. Fixed-effects OLS regressions at the inventor—firm-year
level. Top Inventor indicates inventors in the top decile in terms of average patent count. Robust standard errors clustered at
the inventor—firm level are shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

m ) 3)
D.V.: Patent Count Scaled Citation Payment Count
Distance -0.026 -0.057 -0.018

(0.019) (0.048) (0.041)
Distance x Top Inventor -0.159** -0.407+* -0.314**

(0.073) (0.172) (0.149)
Mean of D.V. (Pre-Relocation): Ordinary Inventors 0.781 1.264 1.533
Mean of D.V. (Pre-Relocation): Top Inventors 1.670 2421 3.276
Inventor-Firm FE Yes Yes Yes
Year FE Yes Yes Yes
Firm Location FE Yes Yes Yes
R? 0.416 0.381 0.418
Inventor-Firm Count 3445 3445 3445
Observations 22,863 22,863 22,863

10 km increase in Distance causes a 10% drop in productivity, versus
less than 4% for less-productive inventors. This finding suggests that
there is a moderating mechanism driving stronger distance effects to
the highest-performing inventors. For example, the cost of effort could
increase more steeply with commuting distance for the top versus the
average inventors.

4.2. Robustness checks

4.2.1. Pre-trend of inventor performance

One of the underlying assumptions in our inventor sample is that
inventor performance is not correlated with the direction of a commut-
ing distance change resulting from a firm relocation. To validate this
assumption, we evaluate whether there are parallel pre-trends (prior to
firm relocation) in innovation performance between the inventors expe-
riencing positive distance shocks (i.e., farther commute group) and the
others (i.e., closer or same commute groups). We adopt the standard test
for parallel trends by estimating a generalized difference-in-differences
specification that looks at yearly average of Patent Count by direction of
distance shock. We estimate the following equation for inventor i, firm
Jj, year relative to workplace relocation event y, and year :

Farther arther Commute;, * fy+o+n,+y+6;+ ©

Yijy = ity

€ijt

where Farther Commute;, equals 1 for inventor—firm pairs for whom the
workplace relocation increased the workplace-home geodesic distance
by 1 km or more, and 0 otherwise. 7, is an elapsed year fixed effect
taking the value of 1 for the year y € [—4, 5] relative to workplace relo-

cation event, and O otherwise. o;; is an inventor-firm fixed effect, y, is
a year fixed effect, and 6, is a firm location fixed effect.

Fig. 5 shows the estimated coefficients of 4" from Eq. 6. We do
not observe any upward (downward) pre-relocation trends for the in-
ventors who experience closer (farther) commuting distance due to re-
location.?® Furthermore, productivity for inventors with farther distance
after relocation falls during the year of the relocation and afterwards re-
mains lower relative to the productivity of those with closer distance.
These findings confirm the assumption that inventor innovation perfor-
mance does not depend on the direction of commuting distance shocks.

4.2.2. Firm-level controls

We test the robustness of our results by including more firm-level
control variables. We manually search all the 1068 firms used in
our main analysis in the Compustat data and find financial informa-
tion for the 405 firms (38%) that have ever gone public, resulting in
9218 matched inventor—firm-year observations. Based on the Compu-
stat data, we obtain firm Turnover, Market Value, and Assets. From the
InfoUSA data, we obtain Employee Count and Sales Volume at the estab-

25 We also test for pre-relocation trends in our main regressions by controlling
for the pre-relocation trends in our main estimation. Given that these regressions
occur at the inventor—firm—year level, we add a dichotomous indicator variable
for pre-relocation periods to the main models so that we can control for poten-
tial pre-relocation fixed effects in the within-inventor-firm-level analysis. The
results remain unchanged with the additional fixed effects.
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Fig. 5. Effect of Farther Commute Relative to Year of Workplace Relocation Event. Coefficient plot at the inventor-firm-year level. The coefficients are estimated
by the fixed-effects OLS regression in Eq. 6. Each dot indicates the difference in the number of granted patents produced by inventors between the inventors having
a longer commute due to firm relocations as compared to the other inventors. The dots are plotted against years before and after firm relocations in the horizontal
axis.

Table 7

Effect of Commuting on Inventor Productivity—Firm-Level Variables. Fixed-effects OLS regressions at the inventor-firm-year
level with subsample observations matched to Compustat. The five self-explanatory firm control variables are added after taking
logs. Robust standard errors clustered at the inventor—firm level are shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

@™ 2) 3) (C)] 5) (6)
D.V.: Patent Count Scaled Citation Payment Count
Distance -0.060** -0.038 -0.077 -0.036 -0.111 -0.058
(0.026) (0.025) (0.058) (0.058) (0.068) (0.066)
Distance x Top Inventor -0.262** -0.467** -0.600%*
(0.114) (0.186) (0.280)
Log Turnover -0.009 -0.009 -0.007 -0.008 0.017 0.016
(0.027) (0.027) (0.088) (0.088) (0.054) (0.054)
Log Market Value 0.031 0.031 -0.015 -0.016 0.050 0.049
(0.032) (0.032) (0.115) (0.115) (0.073) (0.074)
Log Assets 0.093** 0.094** 0.249¢ 0.251* 0.149 0.151
(0.042) (0.042) (0.133) (0.133) (0.095) (0.095)
Log Employee Count -0.012 -0.013 -0.002 -0.002 -0.026 -0.026
(0.010) (0.010) (0.025) (0.025) (0.023) (0.023)
Log Sales Volume -0.009%* -0.009** -0.021%* -0.020%* -0.024%** -0.024%**
(0.004) (0.004) (0.010) (0.010) (0.008) (0.008)
Mean of D.V. (Pre-Relocation): All Inventors 0.858 1.365 1.816
Mean of D.V. (Pre-Relocation): Ordinary Inventors 0.781 1.264 1.533
Mean of D.V. (Pre-Relocation): Top Inventors 1.670 2421 3.276
Inventor-Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Firm Location FE Yes Yes Yes Yes Yes Yes
R? 0.421 0.422 0.445 0.445 0.408 0.409
Inventor-Firm Count 1493 1493 1493 1493 1493 1493
Observations 9218 9218 9218 9218 9218 9218

lishment level. We log transform these variables because their distribu-
tions skew to the right.?®

Table 7 shows the results of patent quantity and quality regressions
in this publicly-traded firm subsample. The estimated coefficients of
commuting on inventor productivity are negative and significant, con-

26 We add 0.01 to the original values so that the zero values are not missing
after the log transformation.

sistent with results from our full sample. Therefore, this result alleviates
the concern that there could be some unobserved firm-level variation
around relocation events correlated with inventor productivity.

4.2.3. Time-varying amenities

Amenities can play an important role in inventor productivity
and determining home location. First, Rauch (1993) finds that local
amenities can affect productivity of workers; he treats human capital
as a local public good and finds a positive relationship between the
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Table 8
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Effect of Commuting on Inventor Productivity—Time-Varying Amenities. Fixed-effects OLS regressions at the inventor—
firm-year level. Instead of Year FE, Inventor Location X Year FE is added to control for time-varying amenity effects around
residential locations of inventors. Robust standard errors clustered at the inventor—firm level are shown in parentheses. * p <

0.10, ** p < 0.05, *** p < 0.01.

(€8] ) ®3) @ ) (6)
D.V.: Patent Count Scaled Citation Payment Count
Distance -0.055** -0.037* -0.103* -0.068 -0.070 -0.037

(0.022) (0.021) (0.058) (0.057) (0.052) (0.051)
Distance x Top Inventor -0.214*** -0.430** -0.407+*

(0.082) (0.175) (0.175)

Mean of D.V. (Pre-Relocation): All Inventors 0.858 1.365 1.816
Mean of D.V. (Pre-Relocation): Ordinary Inventors 0.781 1.264 1.533
Mean of D.V. (Pre-Relocation): Top Inventors 1.670 2421 3.276
Inventor-Firm FE Yes Yes Yes Yes Yes Yes
Firm Location FE Yes Yes Yes Yes Yes Yes
Inventor Location x Year FE Yes Yes Yes Yes Yes Yes
R? 0.466 0.467 0.431 0.431 0.460 0.460
Inventor-Firm Count 3370 3370 3370 3370 3370 3370
Observations 22,023 22,023 22,023 22,023 22,023 22,023

geographic concentration of human capital and productivity gains.
Furthermore, Diamond (2016) shows an endogenous relationship be-
tween local amenities and skilled worker home locations, implying that
local amenities can affect location decisions of workers. If amenities
vary over time, these two channels would bias our results because the
current firm location fixed effects may not fully absorb the effects of
time-varying amenities.?”

To ensure that we isolate the effect of commuting distance, we need
to rule out the possibility that a differential change in amenities for in-
ventors before and after relocation drives the main result. To account
for inventors’ residential urban amenities over time, we include resi-
dential location-by-year fixed effects, Inventor Location x Year FE, to
flexibly control for any neighborhood-level residential amenities as they
might change over time. In Table 8, the estimated coefficients are still
significantly negative even after controlling for the granular Inventor
Location x Year FE, suggesting that time-varying residential amenities
do not drive our results.?®

4.2.4. Additional tests

We also conduct additional robustness tests in Online Appendix A.7.
We analyze subsamples for non-Silicon Valley regions, closer and far-
ther relocation groups, single-authored patents, and bounded distance.
We also replace the main independent variable, Distance, with a cate-
gorical variable based on relocation direction and alternative distance
measures such as driving distance and drive duration. We also estimate
non-linear models, i.e., including the squared term of Distance and using
conditional Poisson and negative binomial distributions for the depen-
dent variables.

4.3. Sample design and inventor home moving

4.3.1. Intuition

Although our identification strategy seeks to rules out confounding
factors in the sample of inventors who did not move their homes, we
need to confirm whether our findings for this set of inventors reflectthe

27 We also investigate the role of time-varying amenities at workplaces, based
on the same lines of reasoning; amenities at workplaces can affect productivity
of workers, and firms may consider this effect in their (re)location decisions. We
conduct similar tests for the workplace-level amenities by including modified
time-varying fixed effects at firm locations. The results of these tests remain
consistent with the main results.

28 We also consider additional fixed effects for residential amenities: difference
in amenity effects before and after relocation (i.e., Inventor x Location FE) and
time-varying amenity effects (i.e., Inventor x Year FE). These fixed effects do
not change the main results.

broader set of inventors including those not in our sample. For exam-
ple, if a better-performing inventor is more averse to longer commuting
distances, this inventor could move to a different home in response to
a firm relocation such that her commuting distance decreases or does
not change. In that case, our sample of inventors who did not move
their homes (i.e., non-moved inventors) may have a downward perfor-
mance bias compared to the inventors who moved their residential lo-
cations (i.e., moved inventors). To address this consideration for the
design of the sample, as a first-order test, we investigate whether there
is any pre-firm-relocation performance difference between the moved
and non-moved inventors. This section explores the performance trends
of these two groups of inventors prior to a firm relocation.?’

4.3.2. Empirical analysis

We conduct a descriptive analysis that plots pre-firm-relocation per-
formance trends of inventors who changed their home locations after
firm relocations (i.e., moved inventors, n = 2,913) and those who did
not (i.e., non-moved inventors, n = 3,417). Fig. 6 presents binned scat-
ter plots depicting the average inventor performance of these two inven-
tor groups for the five years prior to their respective firm relocating. As
performance measures, we use the three main patent-based measures of
innovation quantity and quality, i.e., Patent Count, Scaled Citation, and
Payment Count. The unit of observation is an inventor-year dyad. Given
that we want to explore the patterns of a possible trend while mini-
mizing any limiting assumptions or restrictions, we exclude most of the
controls and fixed effects used in the main analyses, and we only include
year fixed effects in the generation of the binned scatter plot.

Across all three measures, we do not find any observable differ-
ences between the moved and the non-moved inventors in their pre-
firm-relocation performance trends. In addition, we note that the trends
appear nearly flat for both categories of inventors: this reaffirms the
expectation that the samples are well-balanced. In addition to this de-
scriptive analysis, we conduct a more comprehensive regression analysis

29 Even if there is no pre-firm-relocation performance difference between the
moved and non-moved inventors, it is possible for them to have different sensi-
tivity to distance after a firm relocation. That is, the moved inventors could be
more sensitive to (and affected more by) longer commuting distance although
they were not necessarily better-performing than the non-moved inventors be-
fore firm relocations. Because our available data cannot completely rule out this
possibility, we recommend a conservative interpretation of the main estimates
as a lower bound of true distance effects on innovation performance. That said,
we suspect that a potential difference in sensitivity would be limited since there
is no observable performance difference between the groups. Online Appendix
A.6.2 conducts additional tests with an extended data sample to rule out this
potential difference in sensitivity.
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Fig. 6. Innovation Performance before Firm Relocations—Moved and Non-
Moved Inventors. Binned scatter plots at the inventor—year level. The dark dots
represent the inventors who moved their home locations (i.e., Moved), and the
gray dots indicate the inventors who did not move their home locations (i.e.,
Non-Moved). Patent Count is the number patents granted to an inventor per year
before firm relocations. Scaled Citation re-scales the total number of forward
citations to patents received by an inventor per year before relocations, and
Payment Count calculates the number of maintenance fee payments made by a
firm per inventor—year before relocations.

that validates the consistency of pre-firm-relocation performance trends
between the moved and non-moved inventors.>’ We find no statistically
significant evidence for a difference in pre-firm-relocation performance
trends between these two groups of inventors.

We step back to reflect on why we do not observe a difference in pre-
firm-relocation performance trends between the moved and non-moved
inventors. We believe a key plausible explanation is the existence of
salient costs for inventors to move homes. Although the intuition that
better-performing inventors have a greater incentive to change their
home locations to avoid longer commutes makes sense ex ante, home
moving costs may make that decision less clear for an individual inven-
tor. Furthermore, it is also plausible that at least some better-performing
inventors may also have higher implicit moving costs because the op-

30 See Online Appendix A.6.1.
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portunity cost of the time and effort needed for home moving would be
more expensive for them.

5. Conclusion

Commuting is costly for employees. In 2014, 139 million U.S. work-
ers made daily commutes to work, averaging 26 minutes each way
(Ingraham, 2016).3! The total opportunity cost of commuting for work-
ers can exceed their hourly wages (Van Ommeren and Fosgerau, 2009),
amounting to thousands of dollars per average worker per year
(Perino, 2019), and this is before taking into account potential costs
on workers’ subjective well-being (Kahneman and Krueger, 2006). But
how costly is commuting for inventors—an especially important type of
skilled worker—in terms of lost productivity?

We empirically investigate how commuting distance affects the pro-
ductivity of inventors. To test this, we use firm relocation as an ex-
ogenous variation of commuting distance and design a difference-in-
differences model based on the relocation event. This empirical strategy
identifies the causal effect of commuting distance on productivity, sepa-
rated from confounding sorting effects by both firms and inventors. We
find evidence that commuting negatively affects inventor productivity,
with every 10 km increase in commuting distance leading to about a 5%
decrease in patenting quantity and a 7% decrease in patenting quality.
The negative effects are stronger for top inventors whose productivity
is within the top 10% among all inventors.

5.1. Implications for managers and policymakers

Our results provide important implications for managers and firms
in knowledge-intensive industries. Firms should encourage their inven-
tors to live closer to their workplaces and consider commuting distance
when making office location decisions, with greater consideration for
their highest-performing inventors. Some major technology firms al-
ready incentivize their employees to live closer to the workplace. In
2015, Facebook offered employees working at its Silicon Valley head-
quarters over $10,000 to move closer to the office and avoid the lengthy
and time-consuming commute from San Francisco to Menlo Park, CA
(Reuters, 2015). Other technology businesses, like Google, are building
proximate housing for their employees.

For policymakers, our findings support the importance of density in
urban planning policy. Although it is ex ante clear that inventors them-
selves incur a time and monetary cost from commuting, we show that
commuting imposes a further indirect cost on inventor productivity,
borne by both the inventor and her employer. Thus, increasing zon-
ing and other land-use restrictions on multifamily construction have an
unintended efficiency cost, as over the last few decades these policies in-
creased the average commuting time across the United States (Gyourko
et al., 2008, 2019).

5.2. Telecommuting: COVID-19 and future of work

The COVID-19 pandemic of 2020 caused a dramatic change in work
environments and forced firms and skilled workers into telecommut-
ing and remote work arrangements heavily reliant on videoconferencing
and other virtual collaboration tools. Although some of this shift away
from in-office work might be transitory, recent events suggest that the
shock of the pandemic may have a permanent shock on some or many
organizations. For example, technology firm Twitter announced in May
2020 that its workers can choose to permanently stay remote and not re-
turn to the physical office (e.g., Dwoskin, 2020). In light of these recent
trends in remote work, it is crucial to consider our findings on the effect
of physical commuting on innovation in the context of telecommuting.

31 Assumes fifty work weeks in a year, with five work days per week and a
round-trip commute each day.
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As the most direct implication of our finding that physical commuting
has a negative on the performance of inventors, telecommuting could
attenuate that cost by substituting for physical commuting, suggesting
that firms should seriously consider allowing for more telecommuting,
at least among more distant employees.

Going beyond that immediate implication, an interpretation of our
findings in the context of existing literature on telecommuting and re-
mote work suggests a greater degree of complexity in understanding
the relationships between physical commuting, telecommuting, and in-
novation performance. While a full analysis would be beyond the scope
of the present study, we hope to provide some intuition here that can
guide future research on this essential matter. Consider two scenarios
for which telecommuting changes work environments: a hybrid work
environment where skilled employees commute to a physical office and
telecommute to work remotely, and a pure remote work environment
without any commutes to the office. In the hybrid work scenario, recent
work by Choudhury (2020) and Choudhury et al. (2020) suggests that
provisioning of telework—often framed as a “work-from-home” or even
“work-from-anywhere” policy—could prompt workers to move further
from the office than we would traditionally expect. Thus, the hybrid
environment could increase commuting distance, and our research im-
plies that this pattern may result in poorer innovation performance for
in-office work requiring physical commuting. However, our findings on
the effect of physical commuting do not provide insight towards the
innovation that comes about during remote work.

In the second scenario, a pure remote work environment assumes
no physical commuting at all. Although there is no existing literature
looking directly at the relationship between telecommuting and innova-
tion, we can triangulate some key mechanisms on two dimensions. The
economics and management literatures conceptualize innovation as a
combination of general productivity (i.e., value, usefulness) and creativ-
ity (i.e., novelty) (e.g., Amabile, 1983; Bloom and Van Reenen, 2010;
Ghosh and Wu, 2020; Nelson and Winter, 1982).

To decompose the effect of telecommuting on innovation, we need to
consider its effects on general productivity and creativity, both of which
are necessary for innovation. Importantly, telecommuting may have op-
posing effects on these dimensions of performance underlying innova-
tion. On the one hand, telecommuting could improve general productiv-
ity through increased time availability and improved work efficiency per
unit of time (Bloom et al., 2015; 2011). Although prior studies focus on
relatively less-skilled employees than inventors (e.g., call center employ-
ees), telecommuting could plausibly have a positive effect on the general
productivity of inventors. For instance, Bartik et al. (2020) find that
the COVID-19 pandemic facilitated a more rapid transition to remote
work in skilled knowledge work relative to other types of work. On the
other hand, telecommuting can negatively affect important antecedents
to creativity, limiting interpersonal communication and collaboration.
A recent study by Microsoft finds that work-from-home policies during
the COVID-19 pandemic reduced the time for collaboration (Yang et al.,
2020). In addition, early studies of virtual work find that it limits im-
provisational and experimental teamwork (Gibson and Gibbs, 2006) and
learning from others (Cooper and Kurland, 2002). Taking these two op-
posing consequences of telecommuting at face value, it remains unclear
what effect telecommuting would have on innovation performance.

5.3. Future research

There are several avenues for future research. First, future studies
could unpack the relationship between commuting distance, inventor
wages, and inventor productivity. Wages are an important channel in the
endogenous relationship between commuting distance and productivity
(Brueckner, 2001), especially given that an efficiency wage can affect
productivity (Ross and Zenou, 2008). Our research could not leverage
detailed wage data for inventors due to the highly confidential nature
of the tax data sources. Given the lack of wage data, we interpret the
results by conceptualizing the potential role of an efficiency wage, with-
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out directly investigating this channel empirically. It would be worth
investigating the wage dynamics of inventors in regard to changes in
commuting distance to identify the potential role played by efficiency
wages versus the “pure” effect of commuting on productivity.

Second, the literature shows that amenities can affect productivity
of workers (Rauch, 1993) and that workers choose their locations
partly based on local amenities (Diamond, 2016). Given that inven-
tors are more likely to be knowledge-sensitive, and concentrating
high-skilled inventors can strengthen spillover effects, studying the
role of amenities in innovation performance would be an interesting
research question. For purposes of the present study, we control for
the potential amenity effects—with time-varying amenity fixed effects
in our robustness checks—rather than directly investigating how
amenities affect inventors. With detailed data on local amenities, one
could delve into how (changes in) amenities influence innovation
outcomes.

Third, further work should explore the exact mechanisms underly-
ing our identified negative elasticity between commuting and inventor
productivity. Although we offer suggestive evidence that commuting
disproportionately affects inventor productivity for the top inventors,
several potential mechanisms could be at work. For example, inventors
with a longer commute could spend less time at work, or they could be
less productive at work, etc. More detailed time-use data at the inven-
tor level would allow for future research to disentangle these factors.
In particular, clarifying the underlying mechanisms with detailed data
could also separate out the effects of physical commuting on general pro-
ductivity and creativity; as previously alluded in Section 5.2, this gran-
ularity would also provide intuition for understanding telecommuting
(Kun et al., 2020).

Finally, there needs to be more research to empirically identify
the effect of commuting distance on productivity for other types of
skilled workers. Human capital underlies the technological innovation
that is critical for the performance of firms in high-technology indus-
tries (Clough et al., 2019; Hall et al., 2005). More importantly, closer
commuting distance could be more critical for skilled workers because
it can free up time for in-person communication and collaboration
(Battiston et al., 2020) and thereby facilitate knowledge sharing and
spillovers between workers co-located at a workplace. Prior studies
highlight this channel as a crucial factor in generating innovation (Jaffe
et al., 1993; Catalini, 2017). Consequently, future work could expand
on generalizing our particular findings on the link between distance and
patenting to other knowledge-intensive industries.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.jue.2020.103300.
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